ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На неравных сторонах AB и AC треугольника ABC внешним образом построены равнобедренные треугольники AC1B и AB1C с углом φ при вершине. а) M – точка медианы AA1 (или её продолжения), равноудаленная от точек B1 и C1. Докажите, что ∠B1MC1 = φ. б) O – точка серединного перпендикуляра к отрезку BC, равноудаленная от точек B1 и C1. Докажите, что ∠B1OC1 = 180° – φ. Решение |
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 77]
а) M – точка медианы AA1 (или её продолжения), равноудаленная от точек B1 и C1. Докажите, что ∠B1MC1 = φ. б) O – точка серединного перпендикуляра к отрезку BC, равноудаленная от точек B1 и C1. Докажите, что ∠B1OC1 = 180° – φ.
При каких n > 3 правильный n-угольник можно разрезать диагоналями (возможно, пересекающимися внутри него) на равные треугольники?
Многоугольник можно разбить на 100 прямоугольников, но нельзя – на 99. Докажите, что его нельзя разбить на 100 треугольников.
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 77] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|