ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Каждая из сторон выпуклого четырехугольника разделена на пять равных частей и соответствующие точки противоположных сторон соединены (см. рис.). Докажите, что площадь среднего (заштрихованного) четырехугольника в 25 раз меньше площади исходного.


   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 58]      



Задача 56772

Темы:   [ Площадь треугольника (через высоту и основание) ]
[ Площадь четырехугольника ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4
Классы: 8,9,10

Каждая из сторон выпуклого четырехугольника разделена на пять равных частей и соответствующие точки противоположных сторон соединены (см. рис.). Докажите, что площадь среднего (заштрихованного) четырехугольника в 25 раз меньше площади исходного.


Прислать комментарий     Решение

Задача 86114

Темы:   [ Площадь треугольника (через высоту и основание) ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Поворот помогает решить задачу ]
[ Векторы помогают решить задачу ]
Сложность: 4
Классы: 9,10

На сторонах треугольника ABC вовне построены квадраты ABB1A2, BCC1B2 и CAA1C2. На отрезках A1A2 и B1B2 также во внешнюю сторону от треугольников AA1A2 и BB1B2 построены квадраты A1A2A3A4 и B1B2B3B4. Докажите, что  A3B4 || AB.

Прислать комментарий     Решение

Задача 35162

Темы:   [ Трапеции (прочее) ]
[ Площадь треугольника (через высоту и основание) ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 2+
Классы: 9,10

В выпуклом четырёхугольнике ABCD диагонали пересекаются в точке O. Известно, что площади треугольников AOB и COD равны.
Докажите, что ABCD – трапеция или параллелограмм.

Прислать комментарий     Решение

Задача 116347

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Площадь треугольника (через высоту и основание) ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 2+
Классы: 8,9,10

Точки M и N расположены на стороне BC треугольника ABC, а точка K – на стороне AC, причём BM : MN : NC = 1 : 1 : 2 и CK : AK = 1 : 4. Известно, что площадь треугольника ABC равна 1. Найдите площадь четырёхугольника AMNK.

Прислать комментарий     Решение

Задача 116348

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Площадь треугольника (через высоту и основание) ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 2+
Классы: 8,9,10

Точки M и N расположены на стороне AC треугольника ABC, а точки K и L – на стороне AB, причём AM : MN : NC = 1 : 3 : 1 и AK = KL = LB. Известно, что площадь треугольника ABC равна 1. Найдите площадь четырёхугольника KLNM.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 58]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .