ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Многоугольник, описанный около окружности радиуса r, разрезан на треугольники (произвольным образом). Докажите, что сумма радиусов вписанных окружностей этих треугольников больше r.

   Решение

Задачи

Страница: << 96 97 98 99 100 101 102 >> [Всего задач: 507]      



Задача 56804

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Длины сторон (неравенства) ]
[ Неравенства с описанными, вписанными и вневписанными окружностями ]
[ Вписанные и описанные многоугольники ]
[ Свойства частей, полученных при разрезаниях ]
Сложность: 5
Классы: 9,10

Многоугольник, описанный около окружности радиуса r, разрезан на треугольники (произвольным образом). Докажите, что сумма радиусов вписанных окружностей этих треугольников больше r.
Прислать комментарий     Решение


Задача 73538

Темы:   [ Раскраски ]
[ Целочисленные решетки ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Шестиугольники ]
[ Правильные многоугольники ]
Сложность: 5+
Классы: 9,10,11

   а) На рис. 1 плоскость покрыта квадратами пяти цветов. Центры квадратов одного и того же цвета расположены в вершинах сетки из одинаковых квадратов. При каком числе n цветов возможно аналогичное заполнение плоскости?

   б) На рис. 2 плоскость покрыта шестиугольниками семи цветов так, что центры шестиугольников одного и того же цвета образуют вершины решётки из одинаковых правильных треугольников. При каком числе n цветов возможно аналогичное построение?

   Примечание. Имеются в виду только такие заполнения плоскости фигурками (квадратами или шестиугольниками), при котором сетка, соответствующая какому-то одному цвету, имеет такие же размеры и направления сторон квадратов (или треугольников), как и сетка, соответствующая любому другому цвету (то есть все сетки должны получаться друг из друга параллельным сдвигом).

Прислать комментарий     Решение

Задача 56846

Темы:   [ Вписанные и описанные окружности ]
[ Вспомогательные проекции ]
[ Векторы помогают решить задачу ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Шестиугольники ]
Сложность: 8+
Классы: 9,10,11

Медианы треугольника ABC разрезают его на 6 треугольников. Докажите, что центры описанных окружностей этих треугольников лежат на одной окружности.
Прислать комментарий     Решение


Задача 64751

Темы:   [ Пятиугольники ]
[ Примеры и контрпримеры. Конструкции ]
[ Правильный (равносторонний) треугольник ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Правильные многоугольники ]
Сложность: 3+

Существует ли выпуклый пятиугольник, в котором каждая диагональ равна какой-то стороне?

Прислать комментарий     Решение

Задача 61165

Темы:   [ Геометрические интерпретации в алгебре ]
[ Тождественные преобразования (тригонометрия) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Отношение, в котором биссектриса делит сторону ]
[ Пятиугольники ]
[ Правильные многоугольники ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 9,10,11

Найдите  cos 36°  и  cos 72°.

Прислать комментарий     Решение

Страница: << 96 97 98 99 100 101 102 >> [Всего задач: 507]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .