ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 96 97 98 99 100 101 102 >> [Всего задач: 507]      



Задача 109895

Темы:   [ Теория игр (прочее) ]
[ Целочисленные решетки (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Правильный (равносторонний) треугольник ]
[ Шестиугольники ]
Сложность: 4
Классы: 7,8,9

Автор: Дужин Ф.С.



В одном из узлов шестиугольника со стороной n , разбитого на правильные треугольники (см. рис.) , стоит фишка. Двое играющих по очереди передвигают ее в один из соседних узлов, причем запрещается ходить в узел, в котором фишка уже побывала. Проигрывает тот, кто не может сделать хода. Кто выигрывает при правильной игре?
Прислать комментарий     Решение

Задача 110766

Темы:   [ Шестиугольники ]
[ Три прямые, пересекающиеся в одной точке ]
[ Вписанные и описанные окружности ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Вписанные и описанные многоугольники ]
[ Симметрия помогает решить задачу ]
Сложность: 4
Классы: 9,10,11

В шестиугольнике ABCDEF  AB = BC,  CD = DE,  EF = FA  и  ∠A = ∠C = ∠E.
Докажите, что главные диагонали шестиугольника пересекаются в одной точке.

Прислать комментарий     Решение

Задача 58198

Темы:   [ Раскраски ]
[ Правильный (равносторонний) треугольник ]
[ Прямоугольные треугольники (прочее) ]
[ Правильные многоугольники ]
[ Шестиугольники ]
[ Доказательство от противного ]
Сложность: 4+
Классы: 8,9

Точки сторон правильного треугольника раскрашены в два цвета. Докажите, что найдётся прямоугольный треугольник с вершинами одного цвета.

Прислать комментарий     Решение

Задача 64723

Темы:   [ Теория игр (прочее) ]
[ Признаки подобия ]
[ Вспомогательные подобные треугольники ]
[ Симметрия помогает решить задачу ]
[ Вписанные и описанные многоугольники ]
[ Комплексные числа в геометрии ]
[ Оценка + пример ]
Сложность: 4+
Классы: 9,10,11

Автор: Кноп К.А.

Дан треугольник, у которого нет равных углов. Петя и Вася играют в такую игру: за один ход Петя отмечает точку на плоскости, а Вася красит её по своему выбору в красный или синий цвет. Петя выиграет, если какие-то три из отмеченных им и покрашенных Васей точек образуют одноцветный треугольник, подобный исходному. За какое наименьшее число ходов Петя сможет гарантированно выиграть (каков бы ни был исходный треугольник)?

Прислать комментарий     Решение

Задача 111713

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Индукция в геометрии ]
[ Выпуклые многоугольники ]
[ Против большей стороны лежит больший угол ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Разные задачи на разрезания ]
Сложность: 4+
Классы: 8,9,10

а) Докажите, что при n>4 любой выпуклый n -угольник можно разрезать на n тупоугольных треугольников. б) Докажите, что при любом n существует выпуклый n -угольник, который нельзя разрезать меньше, чем на n тупоугольных треугольников. в) На какое наименьшее число тупоугольных треугольников можно разрезать прямоугольник?
Прислать комментарий     Решение


Страница: << 96 97 98 99 100 101 102 >> [Всего задач: 507]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .