ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Все углы выпуклого многоугольника A1...An равны, и из некоторой его внутренней точки O все стороны видны под равными углами.
Докажите, что этот многоугольник правильный.

   Решение

Задачи

Страница: << 67 68 69 70 71 72 73 >> [Всего задач: 507]      



Задача 53344

Темы:   [ Удвоение медианы ]
[ Вспомогательные равные треугольники ]
[ Пятиугольники ]
Сложность: 3+
Классы: 8,9

В выпуклом пятиугольнике ABCDE  AE = AD,  AC = AB  и  ∠DAC = ∠AEB + ∠ABE.
Докажите, что сторона CD в два раза больше медианы AK треугольника ABE.

Прислать комментарий     Решение

Задача 57067

Темы:   [ Правильные многоугольники ]
[ Признаки подобия ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 3+
Классы: 9

Все углы выпуклого многоугольника A1...An равны, и из некоторой его внутренней точки O все стороны видны под равными углами.
Докажите, что этот многоугольник правильный.

Прислать комментарий     Решение

Задача 64708

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Симметрия помогает решить задачу ]
[ Правильные многоугольники ]
Сложность: 3+
Классы: 8,9

Будем называть змейкой ломаную, у которой все углы между соседними звеньями равны, причём для любого некрайнего звена соседние с ним звенья лежат в разных полуплоскостях от этого звена (пример змейки см. на рисунке). Барон Мюнхгаузен заявил, что отметил на плоскости 6 точек и нашёл 6 разных способов соединить их (пятизвенной) змейкой (вершины каждой из змеек – отмеченные точки). Могут ли его слова быть правдой?

Прислать комментарий     Решение

Задача 65184

Темы:   [ Вписанные и описанные окружности ]
[ Примеры и контрпримеры. Конструкции ]
[ Правильные многоугольники ]
Сложность: 3+
Классы: 9,10,11

Существует ли непрямоугольный треугольник, вписанный в окружность радиуса 1, у которого сумма квадратов длин двух сторон равна 4?

Прислать комментарий     Решение

Задача 98503

Темы:   [ Куб ]
[ Сечения, развертки и остовы (прочее) ]
[ Правильные многоугольники ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 10,11

Для какого наибольшего n можно выбрать на поверхности куба n точек так, чтобы не все они лежали в одной грани куба и при этом были вершинами правильного (плоского) n-угольника.

Прислать комментарий     Решение

Страница: << 67 68 69 70 71 72 73 >> [Всего задач: 507]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .