ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В выпуклом четырёхугольнике ABCD: ∠ВАС = 20°, ∠ВСА = 35°, ∠ВDС = 40°, ∠ВDА = 70°. ![]() ![]() Пусть AD и AE — биссектрисы внутреннего и внешнего углов треугольника ABC и Sa — окружность с диаметром DE, окружности Sb и Sc определяются аналогично. Докажите, что: а) окружности Sa, Sb и Sc имеют две общие точки M и N, причем прямая MN проходит через центр описанной окружности треугольника ABC; б) проекции точки M (и точки N) на стороны треугольника ABC образуют правильный треугольник. ![]() ![]() |
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 111]
На окружности заданы две точки A и B. Проводятся всевозможные пары окружностей, касающихся внешним образом друг друга и касающихся внешним образом данной окружности в точках A и B. Какое множество образуют точки взаимного касания этих пар окружностей?
Через вершины треугольника ABC проводятся три произвольные параллельные прямые da, db, dc. Прямые, симметричные da, db, dc относительно BC, CA, AB соответственно, образуют треугольник XYZ. Найдите геометрическое место центров вписанных окружностей таких треугольников.
а) окружности Sa, Sb и Sc имеют две общие точки M и N, причем прямая MN проходит через центр описанной окружности треугольника ABC; б) проекции точки M (и точки N) на стороны треугольника ABC образуют правильный треугольник.
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 111] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |