ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан треугольник ABC. Найдите внутри его точку O, для которой сумма длин отрезков OA, OB, OC минимальна. (Обратите внимание на тот случай, когда один из углов треугольника больше 120o.)

   Решение

Задачи

Страница: << 1 2 3 >> [Всего задач: 13]      



Задача 108652

Темы:   [ Вспомогательные подобные треугольники ]
[ Точка Торричелли ]
[ Вписанные четырехугольники (прочее) ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC угол при вершине A равен 60°. Внутри треугольника взята такая точка O, что  ∠AOB = ∠AOC = 120°.  Точки D и E – середины сторон AB и AC. Докажите, что четырёхугольник ADOE – вписанный.

Прислать комментарий     Решение

Задача 66971

Темы:   [ Гомотетия помогает решить задачу ]
[ Точка Торричелли ]
Сложность: 4
Классы: 8,9,10

Внутри остроугольного неравнобедренного треугольника $ABC$ отмечена точка $T$, такая что $\angle ATB = \angle BTC = 120^\circ$. Окружность с центром $E$ проходит через середины сторон треугольника $ABC$. Оказалось, что точки $B,T,E$ лежат на одной прямой. Найдите угол $ABC$.
Прислать комментарий     Решение


Задача 67133

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Точка Торричелли ]
[ Сфера, вписанная в тетраэдр ]
Сложность: 4
Классы: 10,11

Дан центрально-симметричный октаэдр $ABCA'B'C'$ (пары $A$ и $A'$, $B$ и $B'$, $C$ и $C'$ противоположны), такой, что суммы плоских углов при каждой из вершин октаэдра равны $240^{\circ}$. В треугольниках $ABC$ и $A'BC$ отмечены точки Торричелли $T_1$ и $T_2$. Докажите, что расстояния от $T_1$ и $T_2$ до $BC$ равны.
Прислать комментарий     Решение


Задача 57541

 [Точка Торричелли]
Темы:   [ Экстремальные точки треугольника ]
[ Точка Торричелли ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 6
Классы: 8,9,10

Дан треугольник ABC. Найдите внутри его точку O, для которой сумма длин отрезков OA, OB, OC минимальна. (Обратите внимание на тот случай, когда один из углов треугольника больше 120o.)
Прислать комментарий     Решение


Задача 52420

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Вспомогательная окружность ]
[ Точка Торричелли ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Три точки, лежащие на одной прямой ]
Сложность: 4-
Классы: 8,9

На сторонах произвольного треугольника ABC во внешнюю сторону построены равносторонние треугольники ABC1, A1BC и AB1C.
Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке.

Прислать комментарий     Решение

Страница: << 1 2 3 >> [Всего задач: 13]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .