Страница:
<< 1 2
3 >> [Всего задач: 11]
|
|
Сложность: 5 Классы: 10,11
|
По шоссе в одном направлении едут 10 автомобилей. Шоссе проходит через несколько населённых пунктов. Каждый из автомобилей едет с некоторой постоянной скоростью в населённых пунктах и с некоторой другой постоянной скоростью вне населённых пунктов. Для разных автомобилей эти скорости могут отличаться. Вдоль шоссе расположено 2011 флажков. Известно, что каждый автомобиль проехал мимо
каждого флажка, причём около флажков обгонов не происходило. Докажите, что мимо каких-то двух флажков автомобили проехали в одном и том же порядке.
|
|
Сложность: 6 Классы: 9,10,11
|
Найдите внутри треугольника
ABC точку
O, для которой сумма
квадратов расстояний от нее до сторон треугольника минимальна.
Внутри круглого блина радиуса 10 запекли монету
радиуса 1. Каким наименьшим числом прямолинейных
разрезов можно наверняка задеть монету?
В трапеции ABCD AB – основание, AC = BC, H – середина AB. Пусть l – прямая, проходящая через точку H и пересекающая прямые AD и BD в точках P и Q соответственно. Докажите, что либо углы ACP и QCB равны, либо их сумма равна 180°.
На плоскости даны три попарно пересекающиеся окружности. Через точки пересечения каждых двух из них проведена прямая.
Докажите, что эти три прямые пересекаются в одной точке или параллельны.
Страница:
<< 1 2
3 >> [Всего задач: 11]