ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан треугольник ABC. Постройте прямую, делящую пополам его площадь и периметр.

   Решение

Задачи

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 401]      



Задача 57942

Тема:   [ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 6
Классы: 9

Шестиугольник ABCDEF вписан в окружность радиуса R, причем AB = CD = EF = R. Докажите, что середины сторон BC, DE и FA образуют правильный треугольник.
Прислать комментарий     Решение


Задача 57943

Тема:   [ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 6
Классы: 9

На сторонах выпуклого центрально симметричного шестиугольника ABCDEF внешним образом построены правильные треугольники. Докажите, что середины отрезков, соединяющих вершины соседних треугольников, образуют правильный шестиугольник.
Прислать комментарий     Решение


Задача 57951

Тема:   [ Поворот (прочее) ]
Сложность: 6
Классы: 9

Дан треугольник ABC. Постройте прямую, делящую пополам его площадь и периметр.
Прислать комментарий     Решение


Задача 57952

Тема:   [ Поворот (прочее) ]
Сложность: 6+
Классы: 9

На векторах $ \overrightarrow{A_iB_i}$, где i = 1,..., k, построены правильные одинаково ориентированные n-угольники AiBiCiDi... (n$ \ge$4). Докажите, что k-угольники C1...Ck и  D1...Dk правильные одинаково ориентированные тогда и только тогда, когда k-угольники A1...Ak и  B1...Bk правильные одинаково ориентированные.
Прислать комментарий     Решение


Задача 57953

Тема:   [ Поворот (прочее) ]
Сложность: 6+
Классы: 9

Докажите, что три прямые, симметричные произвольной прямой, проходящей через точку пересечения высот треугольника, относительно сторон треугольника, пересекаются в одной точке.
Прислать комментарий     Решение


Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 401]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .