ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 401]      



Задача 57962

Тема:   [ Композиции поворотов ]
Сложность: 5
Классы: 9

Пусть углы $ \alpha$, $ \beta$, $ \gamma$ таковы, что 0 < $ \alpha$,$ \beta$,$ \gamma$ < $ \pi$ и  $ \alpha$ + $ \beta$ + $ \gamma$ = $ \pi$. Докажите, что если композиция поворотов RC2$\scriptstyle \gamma$oRB2$\scriptstyle \beta$oRA2$\scriptstyle \alpha$ является тождественным преобразованием, то углы треугольника ABC равны $ \alpha$, $ \beta$, $ \gamma$.
Прислать комментарий     Решение


Задача 78230

Тема:   [ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 5
Классы: 10,11

Дан произвольный центрально-симметричный шестиугольник. На его сторонах, как на основаниях, построены во внешнюю сторону правильные треугольники. Доказать, что середины отрезков, соединяющих вершины соседних треугольников, образуют правильный шестиугольник.
Прислать комментарий     Решение


Задача 97885

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Шахматные доски и шахматные фигуры ]
[ Классическая комбинаторика (прочее) ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 5
Классы: 8,9,10,11

Игра в "супершахматы" ведётся на доске размером 30×30, и в ней участвуют 20 разных фигур, каждая из которых ходит по своим правилам. Известно, однако, что
  1) любая фигура с любого поля бьёт не более 20 полей и
  2) если фигуру сдвинуть на несколько полей, то битые поля соответственно сдвигаются (может быть, исчезают за пределы поля).
Докажите, что
  а) любая фигура F бьёт данное поле Х не более, чем с 20 полей;
  б) можно расставить на доске все 20 фигур так, чтобы ни одна из них не била другую.

Прислать комментарий     Решение

Задача 111725

Темы:   [ Свойства симметрии и центра симметрии ]
[ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Вспомогательные равные треугольники ]
[ Площади криволинейных фигур ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5
Классы: 9,10,11

а) Многоугольник обладает следующим свойством: если провести прямую через любые две точки, делящие его периметр пополам, то эта прямая разделит многоугольник на два равновеликих многоугольника. Верно ли, что многоугольник центрально симметричен?
б) Верно ли, что любая фигура, обладающая свойством, указанным в п.а), центрально симметрична?

Прислать комментарий     Решение

Задача 115332

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Радикальная ось ]
Сложность: 5
Классы: 8,9

Дан равнобедренный треугольник ABC ( AB=BC ). Выбрана точка X на стороне AC . Окружность проходит через точку X , касается стороны AC и пересекает описанную окружность треугольника ABC в таких точках M и N , что прямая MN делит отрезок BX пополам и пересекает стороны AB и BC в точках P и Q . Докажите, что описанная окружность треугольника BPQ проходит через центр описанной окружности треугольника ABC .
Прислать комментарий     Решение


Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 401]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .