ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 401]      



Задача 54755

Темы:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Центральная симметрия ]
Сложность: 2+
Классы: 8,9

На прямой взяты точки A, O и B. Точки A1 и B1 симметричны соответственно точкам A и B относительно точки O.
Найдите A1B, если  AB1 = 2.

Прислать комментарий     Решение

Задача 55719

Темы:   [ Правильные многоугольники ]
[ Поворот помогает решить задачу ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 2+
Классы: 8,9

Докажите, что середины сторон правильного многоугольника образуют правильный многоугольник.

Прислать комментарий     Решение


Задача 35023

Темы:   [ Построения (прочее) ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 2+
Классы: 8,9

Внутри угла расположена точка O. Как провести отрезок AB с концами на сторонах угла, проходящий через точку O, который делится точкой O пополам?
Прислать комментарий     Решение


Задача 89906

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Центральная симметрия помогает решить задачу ]
[ Свойства симметрии и центра симметрии ]
Сложность: 2+
Классы: 6,7

На прямоугольном торте лежит круглая шоколадка. Как разрезать торт на две равные части так, чтобы и шоколадка тоже разделилась ровно пополам?
Прислать комментарий     Решение


Задача 103965

Темы:   [ Центральный угол. Длина дуги и длина окружности ]
[ Композиции поворотов ]
Сложность: 2+
Классы: 6,7,8,9

Монету в 1 копейку обкатывают вокруг такой же монеты.
а) Сколько она сделает полных оборотов вокруг своей оси?
б) А если её будут обкатывать вокруг монеты в полдоллара?
(Напомним, что диаметр копейки - 15 мм, диаметр монеты в полдоллара - 30 мм.)
Прислать комментарий     Решение


Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 401]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .