ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Существуют ли на плоскости три такие точки A, B и C, что для любой точки X длина хотя бы одного из отрезков XA, XB и XC иррациональна?

   Решение

Задачи

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 298]      



Задача 58286

Тема:   [ Системы точек ]
Сложность: 4+
Классы: 8,9

На плоскости дано 400 точек. Докажите, что различных расстояний между ними не менее 15.
Прислать комментарий     Решение


Задача 58298

Тема:   [ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 4+
Классы: 8,9

Список упорядоченных в порядке возрастания длин сторон и диагоналей одного выпуклого четырехугольника совпадает с таким же списком для другого четырехугольника. Обязательно ли эти четырехугольники равны?
Прислать комментарий     Решение


Задача 58299

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Рациональные и иррациональные числа ]
Сложность: 4+
Классы: 8,9

Пусть n$ \ge$3. Существуют ли n точек, не лежащих на одной прямой, попарные расстояния между которыми иррациональны, а площади всех треугольников с вершинами в них рациональны?
Прислать комментарий     Решение


Задача 58300

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Рациональные и иррациональные числа ]
Сложность: 4+
Классы: 8,9

Существуют ли на плоскости три такие точки A, B и C, что для любой точки X длина хотя бы одного из отрезков XA, XB и XC иррациональна?
Прислать комментарий     Решение


Задача 66972

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Планарные графы. Формула Эйлера ]
Сложность: 4+
Классы: 9,10,11

Автор: Saghafian M.

Назовем расстоянием между треугольниками $A_1A_2A_3$ и $B_1B_2B_3$ наименьшее из расстояний $A_iB_j$. Можно ли так расположить на плоскости пять треугольников, чтобы расстояние между любыми двумя из них равнялось сумме радиусов их описанных окружностей?
Прислать комментарий     Решение


Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 298]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .