ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть L — взаимно однозначное отображение плоскости в себя, переводящее любую окружность в некоторую окружность. Докажите, что L — аффинное преобразование.

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]      



Задача 58408

Тема:   [ Эллипсы Штейнера ]
Сложность: 7
Классы: 9,10

Найдите барицентрические координаты точки Штейнера.
Прислать комментарий     Решение


Задача 58377

Тема:   [ Аффинные преобразования и их свойства ]
Сложность: 7+
Классы: 8,9

Пусть L — взаимно однозначное отображение плоскости в себя. Предположим, что оно обладает следующим свойством: если три точки лежат на одной прямой, то их образы тоже лежат на одной прямой. Докажите, что тогда L — аффинное преобразование.
Прислать комментарий     Решение


Задача 58378

Тема:   [ Аффинные преобразования и их свойства ]
Сложность: 7+
Классы: 8,9

Пусть L — взаимно однозначное отображение плоскости в себя, переводящее любую окружность в некоторую окружность. Докажите, что L — аффинное преобразование.
Прислать комментарий     Решение


Задача 67241

Темы:   [ Прямая Гаусса ]
[ Аффинная геометрия (прочее) ]
[ Радикальная ось ]
Сложность: 6
Классы: 9,10,11

Автор: Галяпин Г.

В треугольнике $ABC$ вписанная окружность $\omega$ с центром $I$ касается $BC$ в точке $D$. Точка $P$ – проекция ортоцентра треугольника $ABC$ на медиану из вершины $A$. Докажите, что окружности $AIP$ и $\omega$ высекают на $AD$ равные отрезки
Прислать комментарий     Решение


Задача 66978

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Трапеции (прочее) ]
[ Решение задач при помощи аффинных преобразований ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 9,10,11

В неравнобедренном треугольнике $ABC$ точки $A_0$, $B_0$, $C_0$ – середины сторон $BC$, $CA$, $AB$ соответственно. Биссектриса угла $C$ пересекает прямые $A_0C_0$ и $B_0C_0$ в точках $B_1$ и $A_1$. Докажите, что прямые $AB_1$, $BA_1$ и $A_0B_0$ пересекаются в одной точке.
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .