ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что любое иррациональное число α допускает представление α = [a0; a1, ..., an–1, αn], где a0 – целое, a1, a2, ..., an–1 – натуральные, αn > 1 – иррациональное действительное. Отсюда следует, что каждому иррациональному действительному числу можно поставить в соответствие бесконечную цепную дробь. Решение |
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 231]
Докажите, что любое иррациональное число α допускает представление α = [a0; a1, ..., an–1, αn], где a0 – целое, a1, a2, ..., an–1 – натуральные, αn > 1 – иррациональное действительное. Отсюда следует, что каждому иррациональному действительному числу можно поставить в соответствие бесконечную цепную дробь.
Предположим, что число α задано бесконечной цепной дробью α = [a0; a1, ..., an, ...]. Докажите, что где Qk – знаменатели подходящих дробей.
Найдите период дроби 1/49 = 0,0204081632...
Объясните поведение следующей десятичной дроби и найдите её период: 1/243 = 0,004115226337448...
Докажите, что в любой бесконечной десятичной дроби можно так переставить цифры, что полученная дробь станет рациональным числом.
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 231] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|