ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Обозначим через L(m) длину периода дроби 1/m. Докажите, что если (m, 10) = 1, то L(m) является делителем числа φ(m). ![]() ![]() Докажите, что если (m, 30) = 1, то число, состоящее из цифр периода дроби 1/m, делится на 9. ![]() ![]() ![]() Репьюнитами называются числа ![]() ![]() |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]
Докажите, что если (m, 10) = 1, то у десятичного представления дроби 1/m нет предпериода.
Пусть (n, 10) = 1, m < n, (m, n) = 1, и t – наименьшее число, при котором 10t – 1 делится на n.
Репьюнитами называются числа
Докажите, что если (m, 30) = 1, то число, состоящее из цифр периода дроби 1/m, делится на 9.
Обозначим через L(m) длину периода дроби 1/m. Докажите, что если (m, 10) = 1, то L(m) является делителем числа φ(m).
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |