ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Для каждой вершины треугольника ABC нашли угол между высотой и биссектрисой, проведёнными из этой вершины. Оказалось, что эти углы в вершинах A и B равны друг другу и меньше, чем угол в вершине C. Чему равен угол C треугольника?

Вниз   Решение


На шахматной доске более четверти полей занято шахматными фигурами. Докажите, что занятыми оказались хотя бы две соседние (по стороне или диагонали) клетки.

ВверхВниз   Решение


Переложите пирамиду из 10 кубиков (см. рисунок) так, чтобы её форма осталась прежней, но каждый кубик соприкасался только с новыми кубиками.

ВверхВниз   Решение


Укажите все точки плоскости  (x, y),  через которые проходит хотя бы одна кривая семейства  y = p² + (2p – 1)x + 2x².

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 117]      



Задача 116445

Темы:   [ Исследование квадратного трехчлена ]
[ Соображения непрерывности ]
Сложность: 2
Классы: 8,9,10

Автор: Фольклор

Верно ли, что если  b > a + c > 0,  то квадратное уравнение  ax² + bx + c = 0   имеет два корня?

Прислать комментарий     Решение

Задача 115968

Тема:   [ Исследование квадратного трехчлена ]
Сложность: 2+
Классы: 8,9,10

Автор: Фольклор

Известно, что разность кубов корней квадратного уравнения  ax² + bx + c = 0  равна 2011. Сколько корней имеет уравнение  ax² + 2bx + 4c = 0?

Прислать комментарий     Решение

Задача 116482

Тема:   [ Исследование квадратного трехчлена ]
Сложность: 2+
Классы: 7,8,9

На рисунке изображен график приведённого квадратного трёхчлена (ось ординат стёрлась, расстояние между соседними отмеченными точками
равно 1). Чему равен дискриминант этого трёхчлена?

Прислать комментарий     Решение

Задача 60941

Темы:   [ Исследование квадратного трехчлена ]
[ Методы решения задач с параметром ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 3-
Классы: 8,9,10,11

Укажите все точки плоскости  (x, y),  через которые проходит хотя бы одна кривая семейства  y = p² + (2p – 1)x + 2x².

Прислать комментарий     Решение

Задача 35665

Темы:   [ Исследование квадратного трехчлена ]
[ Методы решения задач с параметром ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 3-
Классы: 8,9,10

Рассматриваются квадратичные функции  y = x² + px + q,  для которых  p + q = 2002.
Покажите, что параболы, являющиеся графиками этих функций, пересекаются в одной точке.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 117]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .