ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите неравенства:
  а)  

  б)     при  n > 1;

  в)     при n > 6.

   Решение

Задачи

Страница: << 77 78 79 80 81 82 83 >> [Всего задач: 411]      



Задача 73780

Темы:   [ Системы точек ]
[ Свойства симметрий и осей симметрии ]
[ Симметрия относительно плоскости ]
[ Правильный тетраэдр ]
[ Индукция в геометрии ]
Сложность: 7
Классы: 10,11

Предлагается построить N точек на плоскости так, чтобы все расстояния между ними равнялись заранее заданным числам: для любых двух точек Mi и Mj, где i и j любые числа от 1 до N.

Можно ли провести построение, если расстояния rij заданы так, что всякие 5 из N точек построить можно?

б) Достаточно ли требовать, чтобы можно было построить всякие 4 из N точек?

в) Что изменится, если строить точки не на плоскости, а в пространстве? Каково тогда наименьшее k, для которого возможность построения любых k из данных N точек обеспечивает возможность построения и всех N> точек?
Прислать комментарий     Решение


Задача 32884

Темы:   [ Целочисленные и целозначные многочлены ]
[ Рациональные и иррациональные числа ]
[ Доказательство от противного ]
[ Принцип крайнего (прочее) ]
[ Теорема Безу. Разложение на множители ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 7

Доказать, что если несократимая рациональная дробь  p/q  является корнем многочлена P(x) с целыми коэффициентами, то  P(x) = (qx – p)Q(x),  где многочлен Q(x) также имеет целые коэффициенты.

Прислать комментарий     Решение

Задача 61394

Темы:   [ Произведения и факториалы ]
[ Алгебраические неравенства (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Классические неравенства (прочее) ]
[ Треугольник Паскаля и бином Ньютона ]
[ Индукция (прочее) ]
[ Число e ]
Сложность: 4+
Классы: 10,11

Докажите неравенства:
  а)  

  б)     при  n > 1;

  в)     при n > 6.

Прислать комментарий     Решение

Задача 65124

Темы:   [ Числовые таблицы и их свойства ]
[ Раскраски ]
[ Примеры и контрпримеры. Конструкции ]
[ Теория графов (прочее) ]
[ Принцип крайнего (прочее) ]
[ Индукция (прочее) ]
Сложность: 4+
Классы: 9,10,11

Автор: Храмцов Д.

Дано натуральное число  n ≥ 2.  Рассмотрим все такие покраски клеток доски n×n в k цветов, что каждая клетка покрашена ровно в один цвет и все k цветов встречаются. При каком наименьшем k в любой такой покраске найдутся четыре окрашенных в четыре разных цвета клетки, расположенные в пересечении двух строк и двух столбцов?

Прислать комментарий     Решение

Задача 105118

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Выпуклые тела ]
[ Тетраэдр (прочее) ]
[ Параллельный перенос ]
[ Движение помогает решить задачу ]
[ Индукция в геометрии ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5+
Классы: 10,11

Докажите, что в пространстве существует такое расположение 2001 выпуклого многогранника, что никакие три из многогранников не имеют общих точек, а каждые два касаются друг друга (то есть имеют хотя бы одну граничную точку, но не имеют общих внутренних точек).

Прислать комментарий     Решение

Страница: << 77 78 79 80 81 82 83 >> [Всего задач: 411]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .