ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть Tα(x, y, z) ≥ Tβ(x, y, z) для всех неотрицательных x, y, z. Докажите, что Определение многочленов Tα смотри в задаче 61417, про показатели смотри в справочнике. Решение |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48]
Пусть Tα(x, y, z) ≥ Tβ(x, y, z) для всех неотрицательных x, y, z. Докажите, что Определение многочленов Tα смотри в задаче 61417, про показатели смотри в справочнике.
Три шахматиста A, B и C сыграли матч-турнир (каждый с каждым сыграл одинаковое число партий). Может ли случиться, что по числу очков A занял первое место, C – последнее, а по числу побед, наоборот, A занял последнее место, C – первое (за победу присуждается одно очко, за ничью – пол-очка)?
Имеется 100 серебряных монет, упорядоченных по весу, и 101 золотая монета, они также упорядочены по весу. Известно, что все монеты по весу различны. В нашем распоряжении – двухчашечные весы, позволяющие про каждые две монеты установить, какая тяжелее. Как за наименьшее число взвешиваний найти монету, занимающую среди всех монет 101-е место?
Пусть α = (α1, ..., αn) и β = (β1, ..., βn) – два набора показателей с равной суммой.
В соревновании участвуют 32 боксёра. Каждый боксёр в течение одного дня
может проводить только один бой. Известно, что все боксёры имеют разную силу,
и что сильнейший всегда выигрывает. Докажите, что за 15 дней можно определить место каждого боксёра.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|