ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Точки M, N – середины диагоналей AC, BD прямоугольной трапеции ABCD  (∠A = ∠D = 90°).  Описанные окружности треугольников ABN, CDM пересекают прямую BC в точках Q, R. Докажите, что точки Q, R равноудалены от середины отрезка MN.

   Решение

Задачи

Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 372]      



Задача 56934

 [Прямая Симсона]
Темы:   [ Вписанные и описанные окружности ]
[ Три точки, лежащие на одной прямой ]
[ Вписанные четырехугольники (прочее) ]
[ Прямая Симсона ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 8,9

а) Докажите, что основания перпендикуляров, опущенных из точки P описанной окружности треугольника на его стороны или их продолжения, лежат на одной прямой (прямая Симсона).

б) Основания перпендикуляров, опущенных из некоторой точки P на стороны треугольника или их продолжения, лежат на одной прямой. Докажите, что точка P лежит на описанной окружности треугольника.

Прислать комментарий     Решение

Задача 64399

Темы:   [ Пересекающиеся окружности ]
[ Вписанный угол равен половине центрального ]
[ Вписанные четырехугольники (прочее) ]
[ Инверсия помогает решить задачу ]
[ Проективная геометрия (прочее) ]
Сложность: 4
Классы: 8,9,10

Пусть O – одна из точек пересечения окружностей ω1 и ω2. Окружность ω с центром O пересекает ω1 в точках A и B, а ω2 – в точках C и D. Пусть X – точка пересечения прямых AC и BD. Докажите, что все такие точки X лежат на одной прямой.

Прислать комментарий     Решение

Задача 64469

Темы:   [ Проекции оснований, сторон или вершин трапеции ]
[ Вписанные и описанные окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4
Классы: 9,10,11

Точки M, N – середины диагоналей AC, BD прямоугольной трапеции ABCD  (∠A = ∠D = 90°).  Описанные окружности треугольников ABN, CDM пересекают прямую BC в точках Q, R. Докажите, что точки Q, R равноудалены от середины отрезка MN.

Прислать комментарий     Решение

Задача 64529

Темы:   [ Параллелепипеды (прочее) ]
[ Вписанные многогранники ]
[ Вписанные четырехугольники (прочее) ]
[ Трапеции (прочее) ]
[ Сфера, описанная около тетраэдра ]
Сложность: 4
Классы: 9,10,11

Три плоскости разрезают параллелепипед на 8 шестигранников, все грани которых – четырёхугольники (каждая плоскость пересекает свои две пары противоположных граней параллелепипеда и не пересекает две оставшиеся грани). Известно, что вокруг одного из этих шестигранников можно описать сферу. Докажите, что и вокруг каждого из них можно описать сферу.

Прислать комментарий     Решение

Задача 64754

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Доказательство от противного ]
Сложность: 4

Внутри равнобедренного прямоугольного треугольника ABC с гипотенузой AB взята такая точка M, что угол MAB на 15° больше угла MAC, а угол MCB на 15° больше угла MBC. Найдите угол BMC.

Прислать комментарий     Решение

Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 372]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .