ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 372]      



Задача 66139

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Три прямые, пересекающиеся в одной точке ]
[ Вписанные четырехугольники (прочее) ]
[ Поворот помогает решить задачу ]
[ Отношение площадей подобных треугольников ]
Сложность: 4-
Классы: 8,9

Два квадрата расположены, как показано на рисунке. Докажите, что площадь чёрного треугольника равна сумме площадей серых.

Прислать комментарий     Решение

Задача 66148

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Три точки, лежащие на одной прямой ]
[ Вписанные четырехугольники (прочее) ]
[ Угол между касательной и хордой ]
Сложность: 4-
Классы: 8,9,10

Дана равнобокая трапеция ABCD с основаниями BC и AD. Окружность ω проходит через вершины B и C и вторично пересекает сторону AB и диагональ BD в точках X и Y соответственно. Касательная, проведённая к окружности ω в точке C, пересекает луч AD в точке Z. Докажите, что точки X, Y и Z лежат на одной прямой.

Прислать комментарий     Решение

Задача 66221

Темы:   [ Треугольник, образованный основаниями двух высот и вершиной ]
[ Средняя линия треугольника ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4-
Классы: 9,10

Автор: Тригуб А.

Пусть L – точка пересечения симедиан остроугольного треугольника ABC, а BH – его высота. Известно, что  ∠ALH = 180° – 2∠A.
Докажите, что  ∠CLH = 180° – 2∠C.

Прислать комментарий     Решение

Задача 67071

Темы:   [ Угол между касательной и хордой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
[ Вписанные и описанные окружности ]
Сложность: 4-
Классы: 8,9,10,11

Четырёхугольник $ABCD$ вписан в окружность ω с центром в точке $O$. Описанная окружность Ω треугольника $AOC$ пересекает вторично прямые $AB, BC, CD$ и $DA$ в точках $M, N, K$ и $L$ соответственно. Докажите, что прямые $MN, KL$ и касательные, проведённые к ω в точках $A$ и $C$, касаются одной окружности.

Прислать комментарий     Решение

Задача 102437

Темы:   [ Углы между биссектрисами ]
[ Вспомогательная окружность ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC биссектриса AD угла A и биссектриса BL угла B пересекаются в точке F. Величина угла LFA равна 60o.

1) Найдите величину угла ACB.

2) Вычислите площадь треугольника ABC, если $ \angle$CLD = 45o и AB = 2.

Прислать комментарий     Решение


Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 372]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .