ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Окружности S1 и S2 пересекаются в точках M и N. Через точку A окружности S1 проведены прямые AM и AN, пересекающие окружность S2 в точках B и C, а через точку D окружности S2 – прямые DM и DN, пересекающие S1 в точках E и F, причём точки A, E, F лежат по одну сторону от прямой MN, а D, B, C – по другую (см. рис.). Докажите, что если  AB = DE,  то точки A, F, C и D лежат на одной окружности, положение центра которой не зависит от выбора точек A и D.

Вниз   Решение


Треугольник ABC  (AB > BC)  вписан в окружность Ω. На сторонах AB и BC выбраны точки M и N соответственно так, что  AM = CN.  Прямые MN и AC пересекаются в точке K. Пусть P – центр вписанной окружности треугольника AMK, а Q – центр вневписанной окружности треугольника CNK, касающейся стороны CN. Докажите, что середина дуги ABC окружности Ω равноудалена от точек P и Q.

Вверх   Решение

Задачи

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 374]      



Задача 64772

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Две касательные, проведенные из одной точки ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Точка Микеля ]
Сложность: 4+
Классы: 9,10,11

Треугольник ABC  (AB > BC)  вписан в окружность Ω. На сторонах AB и BC выбраны точки M и N соответственно так, что  AM = CN.  Прямые MN и AC пересекаются в точке K. Пусть P – центр вписанной окружности треугольника AMK, а Q – центр вневписанной окружности треугольника CNK, касающейся стороны CN. Докажите, что середина дуги ABC окружности Ω равноудалена от точек P и Q.

Прислать комментарий     Решение

Задача 65367

Темы:   [ Две пары подобных треугольников ]
[ Симметрия помогает решить задачу ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4+
Классы: 8,9,10,11

На сторонах AB, AC треугольника ABC взяли такие точки C1, B1 соответственно, что  BB1CC1.  Точка X внутри треугольника такова, что
XBC = ∠B1BA,  ∠XCB = ∠C1CA.  Докажите, что  ∠B1XC1 = 90° – ∠A.

Прислать комментарий     Решение

Задача 53300

Темы:   [ Точка Микеля ]
[ Четыре точки, лежащие на одной окружности ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4+
Классы: 8,9

Дан треугольник ABC. На прямых AB, BC и CA взяты точки C1, A1, и B1 соответственно, отличные от вершин треугольника. Докажите, что окружности, описанные около треугольников AB1C1, A1B1C, A1BC1, пересекаются в одной точке.

Прислать комментарий     Решение


Задача 67223

Темы:   [ Четырехугольники (построения) ]
[ Описанные четырехугольники ]
[ Вписанные четырехугольники (прочее) ]
[ Гомотетия помогает решить задачу ]
Сложность: 4+
Классы: 8,9,10,11

Восстановите вписанно-описанный четырёхугольник $ABCD$ по серединам дуг $AB$, $BC$, $CD$ его описанной окружности.
Прислать комментарий     Решение


Задача 108124

Темы:   [ Углы между биссектрисами ]
[ Вписанные и описанные окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Свойства симметрий и осей симметрии ]
Сложность: 4+
Классы: 8,9

Автор: Храмцов Д.

Пусть I – точка пересечения биссектрис треугольника ABC . Обозначим через A' , B' , C' точки, симметричные точке I относительно сторон треугольника ABC . Докажите, что если окружность, описанная около треугольника A'B'C' , проходит через вершину B , то ABC = 60o .
Прислать комментарий     Решение


Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 374]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .