Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 157]
|
|
Сложность: 5- Классы: 10,11
|
Четырёхугольник ABCD описан около окружности с центром I. Касательные к описанной окружности треугольника AIC в точках A, C пересекаются в точке X. Касательные к описанной окружности треугольника BID в точках B, D пересекаются в точке Y. Докажите, что точки X, I, Y лежат на одной прямой.
|
|
Сложность: 5 Классы: 9,10,11
|
Эллипс $\Gamma_1$ c фокусами в серединах сторон $AB$ и $AC$ треугольника $ABC$ проходит через вершину $A$, а эллипс $\Gamma_2$ c фокусами в серединах сторон $AC$ и $BC$ проходит через вершину $C$. Докажите, что точки пересечения этих эллипсов и ортоцентр треугольника $ABC$ лежат на одной прямой.
|
|
Сложность: 5 Классы: 9,10,11
|
Даны полуокружность с диаметром AB и центром O и прямая, пересекающая полуокружность в точках C и D, а прямую AB – в точке M (MB < MA,
MD < MC). Пусть K – отличная от O точка пересечения описанных окружностей треугольников AOC и DOB. Докажите, что угол MKO – прямой.
Точка O – центр вписанной окружности треугольника ABC. На сторонах AC и BC выбраны точки M и K соответственно так, что BK·AB = BO² и
AM·AB = AO². Докажите, что точки M, O и K лежат на одной прямой.
В описанном пятиугольнике ABCDE диагонали AD и CE пересекаются в центре O вписанной окружности.
Докажите, что отрезок BO и сторона DE перпендикулярны.
Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 157]