ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Существует ли непрямоугольный треугольник, вписанный в окружность радиуса 1, у которого сумма квадратов длин двух сторон равна 4? ![]() |
Страница: << 67 68 69 70 71 72 73 >> [Всего задач: 507]
В выпуклом пятиугольнике ABCDE AE = AD, AC = AB и ∠DAC = ∠AEB + ∠ABE.
Все углы выпуклого многоугольника A1...An равны, и из некоторой его внутренней точки O все стороны видны под равными углами.
Будем называть змейкой ломаную, у которой все углы между соседними звеньями равны, причём для любого некрайнего звена соседние с ним звенья лежат в разных полуплоскостях от этого звена (пример змейки см. на рисунке). Барон Мюнхгаузен заявил, что отметил на плоскости 6 точек и нашёл 6 разных способов соединить их (пятизвенной) змейкой (вершины каждой из змеек – отмеченные точки). Могут ли его слова быть правдой?
Существует ли непрямоугольный треугольник, вписанный в окружность радиуса 1, у которого сумма квадратов длин двух сторон равна 4?
Для какого наибольшего n можно выбрать на поверхности куба n точек так, чтобы не все они лежали в одной грани куба и при этом были вершинами правильного (плоского) n-угольника.
Страница: << 67 68 69 70 71 72 73 >> [Всего задач: 507] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |