Страница:
<< 63 64 65 66
67 68 69 >> [Всего задач: 367]
|
|
Сложность: 5- Классы: 8,9,10
|
В государстве n городов, и между каждыми двумя из них курсирует экспресс (в обе стороны). Для каждого экспресса цены билетов "туда" и "обратно" равны, а для разных экспрессов эти цены различны. Докажите, что путешественник может выбрать начальный город, выехать из него и проехать последовательно на n – 1 экспрессах, платя за проезд на каждом следующем меньше, чем за проезд на предыдущем. (Путешественник может попадать несколько раз в один и тот же город.)
|
|
Сложность: 5- Классы: 9,10,11
|
На доске выписаны в ряд n положительных чисел a1, a2, ..., an. Вася хочет выписать под каждым числом ai число bi ≥ ai так, чтобы для каждых двух из чисел b1, b2, ..., bn отношение одного из них к другому было целым. Докажите, что Вася может выписать требуемые числа так, чтобы выполнялось неравенство b1b2...bn ≤ 2(n–1)/2a1a2...an.
Две команды шахматистов одинаковой численности сыграли матч: каждый сыграл по одному разу с каждым из другой команды. В каждой партии давали 1 очко за победу, ½ – за ничью и 0 – за поражение. В итоге команды набрали поровну очков. Докажите, что какие-то два участника матча тоже набрали поровну очков, если в обеих командах было:
а) по 5 шахматистов;
б) произвольное равное число шахматистов.
|
|
Сложность: 5 Классы: 10,11
|
Даны натуральные числа a и b, причём a < b < 2a. На клетчатой плоскости отмечены некоторые клетки так, что в каждом клетчатом прямоугольнике a×b или b×a есть хотя бы одна отмеченная клетка. При каком наибольшем α можно утверждать, что для любого натурального N найдётся клетчатый квадрат N×N, в котором отмечено хотя бы αN² клеток?
|
|
Сложность: 5 Классы: 8,9,10
|
30 учеников одного класса решили побывать друг у друга в гостях. Известно, что ученик за вечер может сделать несколько посещений, и что в тот вечер, когда к нему кто-нибудь должен прийти, он сам никуда не уходит. Покажите, что для того, чтобы все побывали в гостях у всех,
а) четырёх вечеров недостаточно,
б) пяти вечеров также недостаточно,
в) а десяти вечеров достаточно,
г) и даже семи вечеров тоже достаточно.
Страница:
<< 63 64 65 66
67 68 69 >> [Всего задач: 367]