ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 367]      



Задача 73740

Темы:   [ Линейная и полилинейная алгебра ]
[ Системы линейных уравнений ]
[ Принцип Дирихле (прочее) ]
[ Числовые таблицы и их свойства ]
[ Теория множеств (прочее) ]
[ Четность и нечетность ]
Сложность: 4
Классы: 9,10,11

24 студента решали 25 задач. У преподавателя есть таблица размером 24×25, в которой записано, кто какие задачи решил. Оказалось, что каждую задачу решил хотя бы один студент. Докажите, что
  а) можно отметить некоторые задачи "галочкой" так, что каждый из студентов решил чётное число (в частности, может быть, нуль) отмеченных задач;
  б) можно отметить некоторые из задач знаком "+", а некоторые из остальных – знаком "–" и приписать каждой задаче некоторое натуральное число баллов так, чтобы каждый студент набрал поровну баллов за задачи, отмеченные знаками "+" и "–".
Прислать комментарий     Решение


Задача 78598

Темы:   [ Взвешивания ]
[ Сочетания и размещения ]
[ Принцип Дирихле (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Из набора гирь весом 1, 2, ..., 26 выделить шесть гирь так, чтобы среди них не было выбрать двух кучек равного веса.
Доказать, что нельзя выбрать семь гирь, обладающих тем же свойством.

Прислать комментарий     Решение

Задача 79483

Темы:   [ Объединение, пересечение и разность множеств ]
[ Задачи с ограничениями ]
[ Принцип Дирихле (прочее) ]
Сложность: 4
Классы: 8,9,10

Даны 1985 множеств, каждое из которых состоит из 45 элементов, причём объединение любых двух множеств содержит ровно 89 элементов.
Сколько элементов содержит объединение всех этих 1985 множеств?

Прислать комментарий     Решение

Задача 97918

Темы:   [ Турниры и турнирные таблицы ]
[ Доказательство от противного ]
[ Принцип Дирихле (прочее) ]
Сложность: 4
Классы: 10,11

Автор: Бона М.

В футбольном турнире в один круг участвовало 28 команд. По окончании турнира оказалось, что более ¾ всех игр закончилось вничью.
Докажите, что какие-то две команды набрали поровну очков.

Прислать комментарий     Решение

Задача 98109

Темы:   [ Геометрия на клетчатой бумаге ]
[ Раскраски ]
[ Принцип Дирихле (прочее) ]
Сложность: 4
Классы: 7,8,9

Автор: Фомин С.В.

Квадрат 9×9 разбит на 81 единичную клетку. Некоторые клетки закрашены, причём расстояние между центрами каждых двух закрашенных клеток больше 2.
  а) Приведите пример раскраски, при которой закрашенных клеток 17.
  б) Докажите, что больше 17 закрашенных клеток быть не может.

Прислать комментарий     Решение

Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 367]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .