ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Имеются два симметричных кубика. Можно ли так написать на их гранях некоторые числа, чтобы сумма очков при бросании принимала значения 1, 2, ..., 36 с равными вероятностями?

   Решение

Задачи

Страница: << 86 87 88 89 90 91 92 >> [Всего задач: 598]      



Задача 65267

Темы:   [ Дискретное распределение ]
[ Системы счисления (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10,11

Имеются два симметричных кубика. Можно ли так написать на их гранях некоторые числа, чтобы сумма очков при бросании принимала значения 1, 2, ..., 36 с равными вероятностями?

Прислать комментарий     Решение

Задача 78029

Темы:   [ Арифметика остатков (прочее) ]
[ Десятичная система счисления ]
[ Разложение на множители ]
Сложность: 3+
Классы: 8,9,10

2n = 10a + b.  Доказать, что если  n > 3,  то ab делится на 6.  (n, a и b – целые числа,  b < 10.)

Прислать комментарий     Решение

Задача 78477

Темы:   [ Арифметическая прогрессия ]
[ Десятичная система счисления ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9,10

Первый член и разность арифметической прогрессии — натуральные числа. Доказать, что найдётся такой член прогрессии, в записи которого участвует цифра 9.
Прислать комментарий     Решение


Задача 78519

Темы:   [ Признаки делимости на 3 и 9 ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 8,9

Рассмотрим суммы цифр всех чисел от 1 до 1000000 включительно. У полученных чисел вновь рассмотрим сумму цифр и так далее, пока не получим миллион однозначных чисел. Каких чисел больше среди них – единиц или двоек?

Прислать комментарий     Решение

Задача 78580

Темы:   [ Простые числа и их свойства ]
[ Десятичная система счисления ]
[ Разложение на множители ]
[ Перебор случаев ]
Сложность: 3+
Классы: 8,9,10

Найдите все простые числа вида  PP + 1  (P – натуральное), содержащие не более 19 цифр.

Прислать комментарий     Решение

Страница: << 86 87 88 89 90 91 92 >> [Всего задач: 598]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .