ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Сколько существует несократимых дробей с числителем 2015, меньших чем 1/2015 и больших чем 1/2016?

   Решение

Задачи

Страница: << 111 112 113 114 115 116 117 >> [Всего задач: 2440]      



Задача 65504

Темы:   [ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

Натуральное число n называется хорошим, если после приписывания его справа к любому натуральному числу получается число, делящееся на n. Запишите десять хороших чисел, которые меньше чем 1000.

Прислать комментарий     Решение

Задача 65523

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 10,11

Существуют ли такие целые числа p и q, что при любых целых значениях x выражение  x2 + px + q  кратно 3?

Прислать комментарий     Решение

Задача 65548

Темы:   [ Четность и нечетность ]
[ Степень вершины ]
Сложность: 3+
Классы: 8,9,10

Имеется несколько городов, некоторые из них соединены автобусными маршрутами (без остановок в пути). Из каждого города можно проехать в любой другой (возможно, с пересадками). Иванов купил по одному билету на каждый маршрут (то есть может проехать по нему один раз всё равно в какую сторону). Петров купил n билетов на каждый маршрут. Иванов и Петров выехали из города A. Иванов использовал все свои билеты, новых не покупал и оказался в другом городе B. Петров некоторое время ездил по купленным билетам, оказался в городе X и не может из него выехать, не купив новый билет. Докажите, что X – это либо A, либо B

Прислать комментарий     Решение

Задача 65550

Темы:   [ Деление с остатком ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Сколько существует разных способов разбить число 2004 на натуральные слагаемые, которые приблизительно равны? Слагаемых может быть одно или несколько. Числа называются приблизительно равными, если их разность не больше 1. Способы, отличающиеся только порядком слагаемых, считаются одинаковыми.

Прислать комментарий     Решение

Задача 65592

Темы:   [ Делимость чисел. Общие свойства ]
[ Обыкновенные дроби ]
[ Формула включения-исключения ]
Сложность: 3+
Классы: 7,8,9

Сколько существует несократимых дробей с числителем 2015, меньших чем 1/2015 и больших чем 1/2016?

Прислать комментарий     Решение

Страница: << 111 112 113 114 115 116 117 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .