ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Квадраты ABCD и BEFG расположены так, как показано на рисунке. Оказалось, что точки A, G и E лежат на одной прямой.
Докажите, что тогда точки D, F и E также лежат на одной прямой.

   Решение

Задачи

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 239]      



Задача 65065

Темы:   [ Четырехугольники (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательные равные треугольники ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 8,9

В выпуклом четырёхугольнике ABCD выполнены соотношения  AB = BD,  ∠ABD = ∠DBC.  На диагонали BD нашлась такая точка K, что  BK = BC.
Докажите, что  ∠KAD = ∠KCD.

Прислать комментарий     Решение

Задача 65423

Темы:   [ Правильный (равносторонний) треугольник ]
[ Признаки и свойства параллелограмма ]
[ Вспомогательные равные треугольники ]
[ Поворот помогает решить задачу ]
Сложность: 3+
Классы: 9,10,11

На сторонах АВ, ВС и СА равностороннего треугольника АВС выбраны точки D, E и F соответственно так, что  DE || АC,  DF || BС.
Найдите угол между прямыми и BF.

Прислать комментарий     Решение

Задача 65518

Темы:   [ Перпендикулярные прямые ]
[ Вписанные и описанные окружности ]
[ Вспомогательные равные треугольники ]
[ Симметрия помогает решить задачу ]
[ Угол между касательной и хордой ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 9,10,11

В остроугольном треугольнике MKN проведена биссектриса KL. Точка X на стороне MK такова, что  KX = KN.  Докажите, что прямые KO и XL перпендикулярны (O – центр описанной окружности треугольника MKN).

Прислать комментарий     Решение

Задача 65639

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Три точки, лежащие на одной прямой ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 6,7,8

Квадраты ABCD и BEFG расположены так, как показано на рисунке. Оказалось, что точки A, G и E лежат на одной прямой.
Докажите, что тогда точки D, F и E также лежат на одной прямой.

Прислать комментарий     Решение

Задача 65792

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Вспомогательные равные треугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

Автор: Тригуб А.

В четырёхугольнике ABCD  ∠B = ∠D = 90°  и  AC = BC + DC.  Точка P на луче BD такова, что  BP = AD.
Докажите, что прямая CP параллельна биссектрисе угла ABD.

Прислать комментарий     Решение

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 239]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .