ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В куб с ребром 1 поместили 8 непересекающихся шаров (возможно, разного размера). Может ли сумма диаметров этих шаров быть больше 4?

   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]      



Задача 87028

Темы:   [ Свойства сечений ]
[ Отношение объемов ]
[ Скрещивающиеся прямые и ГМТ ]
[ Проектирование помогает решить задачу ]
[ Признаки и свойства параллелограмма ]
[ Объем тетраэдра и пирамиды ]
Сложность: 4
Классы: 10,11

Докажите, что плоскость, проходящая через середины двух противоположных рёбер любой треугольной пирамиды, делит её объём пополам.
Прислать комментарий     Решение


Задача 65681

Темы:   [ Куб ]
[ Примеры и контрпримеры. Конструкции ]
[ Сфера, вписанная в трехгранный угол ]
[ Проектирование помогает решить задачу ]
[ Малые шевеления ]
Сложность: 4+
Классы: 9,10,11

В куб с ребром 1 поместили 8 непересекающихся шаров (возможно, разного размера). Может ли сумма диаметров этих шаров быть больше 4?

Прислать комментарий     Решение

Задача 109021

Темы:   [ Пространственные многоугольники ]
[ Касательные к сферам ]
[ Теоремы Чевы и Менелая в пространстве ]
[ Проектирование помогает решить задачу ]
[ Перпендикуляр и наклонная ]
Сложность: 4+
Классы: 10,11

Около сферы описан пространственный четырёхугольник. Доказать, что точки касания лежат в одной плоскости.
Прислать комментарий     Решение


Задача 105166

Темы:   [ Двугранный угол ]
[ Векторы помогают решить задачу ]
[ Скалярное произведение ]
[ Проектирование помогает решить задачу ]
[ Многогранники и многоугольники (прочее) ]
[ Выпуклые тела ]
[ Полярный трехгранный угол ]
[ Неравенства с трехгранными углами ]
Сложность: 6
Классы: 10,11

У выпуклого многогранника внутренний двугранный угол при каждом ребре острый. Сколько может быть граней у многогранника?
Прислать комментарий     Решение


Задача 110485

 [Равногранный тетраэдр]
Темы:   [ Равногранный тетраэдр ]
[ Достроение тетраэдра до параллелепипеда ]
[ Развертка помогает решить задачу ]
[ Проектирование помогает решить задачу ]
[ Медиана пирамиды (тетраэдра) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 6+
Классы: 10,11

Докажите, что следующие свойства тетраэдра равносильны:

1) все грани равновелики;

2) каждое ребро равно противоположному;

3) все грани равны;

4) центры описанной и вписанной сфер совпадают;

5) суммы углов при каждой вершине равны;

6) сумма плоских углов при каждой вершине равна 180o ;

7) развёртка тетраэдра представляет собой остроугольный треугольник, в котором проведены средние линии;

8) все грани – остроугольные треугольники с одинаковым радиусом описанной окружности;

9) ортогональная проекция тетраэдра на каждую из трёх плоскостей, параллельных двум противоположным рёбрам, – прямоугольник;

10) параллелепипед, полученный в результате проведения через противоположные рёбра трёх пар параллельных плоскостей, – прямоугольный;

11) высоты тетраэдра равны;

12) точка пересечения медиан совпадает с центром описанной сферы;

13) точка пересечения медиан совпадает с центром вписанной сферы;

14) сумма плоских углов при трёх вершинах равна 180o ;

15) сумма плоских углов при двух вершинах равна 180o и два противоположных ребра равны.
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .