ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Скутин А.

Правильный шестиугольник ABCDEF вписан в окружность. Точки P и Q выбраны на касательных, проведённых к этой окружности в точках A и D соответственно, так, что прямая PQ касается меньшей дуги EF этой окружности. Найдите угол между прямыми PB и QC.

   Решение

Задачи

Страница: << 75 76 77 78 79 80 81 >> [Всего задач: 402]      



Задача 111839

Темы:   [ Пересекающиеся окружности ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Две касательные, проведенные из одной точки ]
[ Две касательные, проведенные из одной точки ]
[ Признаки и свойства параллелограмма ]
Сложность: 5
Классы: 9,10

Две окружности σ1 и σ2 пересекаются в точках A и B . Пусть PQ и RS – отрезки общих внешних касательных к этим окружностям (точки P и R лежат на σ1 , точки Q и S – на σ2 ). Оказалось, что RB|| PQ . Луч RB вторично пересекает σ2 в точке W . Найдите отношение RB/BW .
Прислать комментарий     Решение


Задача 109847

Темы:   [ Свойства симметрий и осей симметрии ]
[ Гомотетия помогает решить задачу ]
[ Гомотетичные окружности ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Признаки и свойства параллелограмма ]
[ Вписанные и описанные окружности ]
Сложность: 6-
Классы: 8,9,10,11

Окружность σ касается равных сторон AB и AC равнобедренного треугольника ABC и пересекает сторону BC в точках K и L . Отрезок AK пересекает σ второй раз в точке M . Точки P и Q симметричны точке K относительно точек B и C соответственно. Докажите, что описанная окружность треугольника PMQ касается окружности σ .
Прислать комментарий     Решение


Задача 66257

Темы:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Вписанный угол, опирающийся на диаметр ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

В треугольнике ABC  ∠A = 60°,  точки M и N на сторонах AB и AC соответственно таковы, что центр описанной окружности треугольника ABC делит отрезок MN пополам. Найдите отношение  AN : MB.

Прислать комментарий     Решение

Задача 66188

Темы:   [ Признаки и свойства касательной ]
[ Поворот (прочее) ]
[ Три точки, лежащие на одной прямой ]
[ Две касательные, проведенные из одной точки ]
[ Вспомогательные равные треугольники ]
[ Признаки и свойства параллелограмма ]
[ Симметрия помогает решить задачу ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 9,10,11

Прямая касается окружности в точке A. На прямой выбрали точку B и повернули отрезок AB на некоторый угол вокруг центра окружности, получив отрезок A'B'. Докажите, что прямая, проходящая через точки касания A и A', делит пополам отрезок BB'.

Прислать комментарий     Решение

Задача 65807

Темы:   [ Шестиугольники ]
[ Правильные многоугольники ]
[ Точка Лемуана ]
[ Средняя линия треугольника ]
[ Вписанный угол равен половине центрального ]
[ Признаки и свойства параллелограмма ]
Сложность: 4-
Классы: 8,9,10

Автор: Скутин А.

Правильный шестиугольник ABCDEF вписан в окружность. Точки P и Q выбраны на касательных, проведённых к этой окружности в точках A и D соответственно, так, что прямая PQ касается меньшей дуги EF этой окружности. Найдите угол между прямыми PB и QC.

Прислать комментарий     Решение

Страница: << 75 76 77 78 79 80 81 >> [Всего задач: 402]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .