ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Вчера Никита купил несколько ручек: чёрные – по 9 рублей за штуку и синие – по 4 рубля за штуку. Зайдя сегодня в тот же магазин, он обнаружил, что цены на ручки изменились: чёрные стали стоить 4 рубля за штуку, а синие – 9 рублей. Увидев такое, Никита сказал с досадой: "Покупай я те же ручки сегодня, сэкономил бы 49 рублей". Не ошибается ли он?

   Решение

Задачи

Страница: << 112 113 114 115 116 117 118 >> [Всего задач: 2440]      



Задача 65818

Темы:   [ Уравнения в целых числах ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 9,10,11

Можно ли уместить два точных куба между соседними точными квадратами?
Иными словами, имеет ли решение в целых числах неравенство:  n² < a³ < b³ < (n + 1)²?
Прислать комментарий     Решение


Задача 65895

Тема:   [ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 6,7

Вчера Никита купил несколько ручек: чёрные – по 9 рублей за штуку и синие – по 4 рубля за штуку. Зайдя сегодня в тот же магазин, он обнаружил, что цены на ручки изменились: чёрные стали стоить 4 рубля за штуку, а синие – 9 рублей. Увидев такое, Никита сказал с досадой: "Покупай я те же ручки сегодня, сэкономил бы 49 рублей". Не ошибается ли он?

Прислать комментарий     Решение

Задача 65987

Тема:   [ Уравнения в целых числах ]
Сложность: 3+
Классы: 8,9,10,11

Число 1047 при делении на A дает остаток 23, а при делении на  A + 1  – остаток 7. Найдите A.

Прислать комментарий     Решение

Задача 65988

Темы:   [ Уравнения в целых числах ]
[ Квадратные уравнения. Теорема Виета ]
Сложность: 3+
Классы: 9,10,11

Пусть a, b, c, d – действительные числа, удовлетворяющие системе
  a/b + b/c + c/d + d/a = 6,
  a/c + b/d + c/a + d/b = 8.
Какие значения может принимать выражение a/b + c/d?

Прислать комментарий     Решение

Задача 66000

Темы:   [ Четность и нечетность ]
[ Геометрическая прогрессия ]
[ Уравнения в целых числах ]
[ Двоичная система счисления ]
Сложность: 3+
Классы: 10,11

Могут ли три различных числа вида  2n + 1,  где n – натуральное, быть последовательными членами геометрической прогрессии?

Прислать комментарий     Решение

Страница: << 112 113 114 115 116 117 118 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .