ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Из вершины тупого угла А треугольника АВС опущена высота AD. Проведена окружность с центром D и радиусом DA, которая вторично пересекает стороны AB и AC в точках M и N соответственно. Найдите AC, если  AB = c,  AM = m  и  AN = n.

   Решение

Задачи

Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 372]      



Задача 65116

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Признаки равенства прямоугольных треугольников ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 9,10

Дан прямоугольный треугольник ABC с прямым углом C. Пусть BK – биссектриса этого треугольника. Описанная окружность треугольника AKB пересекает вторично сторону BC в точке L. Докажите, что  CB + CL = AB.

Прислать комментарий     Решение

Задача 65914

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанный угол равен половине центрального ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вписанные четырехугольники (прочее) ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 10,11

Из вершины тупого угла А треугольника АВС опущена высота AD. Проведена окружность с центром D и радиусом DA, которая вторично пересекает стороны AB и AC в точках M и N соответственно. Найдите AC, если  AB = c,  AM = m  и  AN = n.

Прислать комментарий     Решение

Задача 102399

Темы:   [ Вспомогательные подобные треугольники ]
[ Вспомогательная окружность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

На стороне острого угла KOM взята точка L между O и K. Окружность проходит через точки K и L и касается луча OM в точке M. На дуге LM, не содержащей точки K, взята точка N. Расстояния от точки N до прямых OM, OK и KM равны m, k и l соответственно. Найдите расстояние от точки N до прямой LM.

Прислать комментарий     Решение

Задача 102400

Темы:   [ Вспомогательные подобные треугольники ]
[ Вспомогательная окружность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

Окружность пересекает одну сторону острого угла AOB в точках C и A (C лежит между O и A) и касается другой стороны угла в точке B. На дуге AB, не содержащей точки C, взята точка D. Расстояния от точки D до прямых AC, OB и AB равны a, b и c соответственно. Найдите расстояние от точки D до прямой BC.

Прислать комментарий     Решение

Задача 55037

Темы:   [ Вспомогательные подобные треугольники ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Правильный (равносторонний) треугольник ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
[ Поворот помогает решить задачу ]
Сложность: 4-
Классы: 8,9

На сторонах AB, AC и BC правильного треугольника ABC расположены соответственно точки C1, B1 и A1 так, что треугольник A1B1C1 – правильный. Отрезок BB1 пересекает сторону C1A1 в точке O, причём  BO/OB1 = k.  Найдите отношение площади треугольника ABC к площади треугольника A1B1C1.

Прислать комментарий     Решение

Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 372]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .