ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Из вершины тупого угла А треугольника АВС опущена высота AD. Проведена окружность с центром D и радиусом DA, которая вторично пересекает стороны AB и AC в точках M и N соответственно. Найдите AC, если  AB = c,  AM = m  и  AN = n.

   Решение

Задачи

Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 375]      



Задача 116491

Темы:   [ Геометрические неравенства (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
[ Прямые, лучи, отрезки и углы (прочее) ]
[ Вписанные четырехугольники (прочее) ]
[ Симметрия помогает решить задачу ]
Сложность: 3
Классы: 7,8,9

В окружности с центром O проведена хорда AB и радиус OK, пересекающий её под прямым углом в точке M. На большей дуге AB окружности выбрана точка P, отличная от середины этой дуги. Прямая PM вторично пересекает окружность в точке Q, а прямая PK пересекает AB в точке R. Докажите, что  KR > MQ.

Прислать комментарий     Решение

Задача 116743

Темы:   [ Трапеции (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Свойства биссектрис, конкуррентность ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3
Классы: 8,9

В трапеции ABCD стороны AD и BC параллельны, и  AB = BC = BD.  Высота BK пересекает диагональ AC в точке M. Найдите ∠CDM.

Прислать комментарий     Решение

Задача 64808

Темы:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Симметрия помогает решить задачу ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 9,10

В треугольнике ABC  ∠B = 60°,  O – центр описанной окружности, BL – биссектриса. Описанная окружность треугольника BOL пересекает описанную окружность треугольника ABC вторично в точке D. Докажите, что  BDAC.

Прислать комментарий     Решение

Задача 65116

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Признаки равенства прямоугольных треугольников ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 9,10

Дан прямоугольный треугольник ABC с прямым углом C. Пусть BK – биссектриса этого треугольника. Описанная окружность треугольника AKB пересекает вторично сторону BC в точке L. Докажите, что  CB + CL = AB.

Прислать комментарий     Решение

Задача 65914

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанный угол равен половине центрального ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вписанные четырехугольники (прочее) ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 10,11

Из вершины тупого угла А треугольника АВС опущена высота AD. Проведена окружность с центром D и радиусом DA, которая вторично пересекает стороны AB и AC в точках M и N соответственно. Найдите AC, если  AB = c,  AM = m  и  AN = n.

Прислать комментарий     Решение

Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 375]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .