ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Точки M и N – середины сторон AB и CD соответственно четырёхугольника ABCD. Известно, что BC || AD и AN = CM. ![]() |
Страница: << 128 129 130 131 132 133 134 >> [Всего задач: 2247]
Внутри равнобокой трапеции ABCD с основаниями BC и AD расположена окружность ω с центром I, касающаяся отрезков AB, CD и DA. Описанная окружность треугольника BIC вторично пересекает сторону AB в точке E. Докажите, что прямая CE касается окружности ω.
В четырёхугольнике ABCD AB = CD, M и K – середины BC и AD. Докажите, что угол между MK и AC равен полусумме углов BAC и DCA.
В прямоугольнике ABCD на диагонали AC отмечена точка K так, что CK = BC. На стороне ВС отмечена точка М так, что КМ = СМ.
Четырёхугольник ABCD вписан в окружность Г c центром в точке O. Его диагонали AC и BD перпендикулярны и пересекаются в точке P, причём точка O лежит внутри треугольника BPC. На отрезке BO выбрана точка H так, что ∠BHP = 90°. Описанная окружность ω треугольника PHD вторично пересекает отрезок PC в точке Q. Докажите, что AP = CQ.
Точки M и N – середины сторон AB и CD соответственно четырёхугольника ABCD. Известно, что BC || AD и AN = CM.
Страница: << 128 129 130 131 132 133 134 >> [Всего задач: 2247] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |