ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

От правильного октаэдра со стороной 1 отрезали шесть углов – пирамидок с квадратным основанием и ребром ⅓. Получился многогранник, грани которого – квадраты и правильные шестиугольники. Можно ли копиями такого многогранника замостить пространство?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]      



Задача 66201

Темы:   [ Правильные многогранники. Двойственность и взаимосвязи ]
[ Примеры и контрпримеры. Конструкции ]
[ Четность и нечетность ]
[ Параллельный перенос ]
[ Cерединный перпендикуляр и ГМТ ]
Сложность: 4+
Классы: 10,11

От правильного октаэдра со стороной 1 отрезали шесть углов – пирамидок с квадратным основанием и ребром ⅓. Получился многогранник, грани которого – квадраты и правильные шестиугольники. Можно ли копиями такого многогранника замостить пространство?

Прислать комментарий     Решение

Задача 65858

Темы:   [ Правильные многогранники (прочее) ]
[ Четность и нечетность ]
[ Инварианты ]
[ Четность перестановки ]
Сложность: 5-
Классы: 9,10,11

Муравей ползает по замкнутому маршруту по рёбрам додекаэдра, нигде не разворачиваясь назад. Маршрут проходит ровно два раза по каждому ребру.
Докажите, что некоторое ребро муравей оба раза проходит в одном и том же направлении.

Прислать комментарий     Решение

Задача 105067

Темы:   [ Правильные многогранники. Двойственность и взаимосвязи ]
[ Объем помогает решить задачу ]
[ Правильный тетраэдр ]
Сложность: 5+
Классы: 10,11

Грани правильного октаэдра раскрашены в белый и черный цвет. При этом любые две грани, имеющие общее ребро, покрашены в разные цвета.
Докажите, что для любой точки внутри октаэдра сумма расстояний до плоскостей белых граней равна сумме расстояний до плоскостей черных граней.
Прислать комментарий     Решение


Задача 111351

Темы:   [ Группы движений (самосовмещений) правильных многогранников ]
[ Наименьшая или наибольшая площадь (объем) ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Медиана пирамиды (тетраэдра) ]
[ Площадь и ортогональная проекция ]
[ Неравенства с площадями ]
[ Площадь. Одна фигура лежит внутри другой ]
[ Гомотетия помогает решить задачу ]
Сложность: 7-
Классы: 10,11

Среди вершин любого ли многогранника можно выбрать четыре вершины тетраэдра, площадь проекции которого на любую плоскость составляет от площади проекции (на ту же плоскость) исходного многогранника: а) больше, чем , б) не меньше, чем , в) не меньше, чем ?

Прислать комментарий     Решение


Задача 66541

Темы:   [ Теория алгоритмов (прочее) ]
[ Правильные многогранники (прочее) ]
[ Раскраски ]
[ Перебор (прочее) ]
Сложность: 3
Классы: 6

а) Мальвина разбила каждую грань куба 2×2×2 на единичные квадраты и велела Буратино в некоторых квадратах написать крестики, а в остальных нолики так, чтобы каждый квадрат граничил по сторонам с двумя крестиками и двумя ноликами. На рисунке показано, как Буратино выполнил задание (видно только три грани). Докажите, что Буратино ошибся.

б) Помогите Буратино выполнить задание правильно. Достаточно описать хотя бы одну верную расстановку.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .