ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Стороны произвольного выпуклого многоугольника покрашены снаружи. Проводится несколько диагоналей многоугольника, так, что никакие три не пересекаются в одной точке. Каждая из этих диагоналей тоже покрашена с одной стороны, т.е. с одной стороны отрезка проведена узкая цветная полоска. Доказать, что хотя бы один из многоугольников, на которые разбит диагоналями исходный многоугольник, весь покрашен снаружи. ![]() ![]() Разрежьте изображённую на левом рисунке фигуру на две одинаковые части.
![]() ![]() ![]() Докажите, что разность квадратов соседних сторон параллелограмма меньше произведения его диагоналей. ![]() ![]() ![]() На доске размером 8×8 в углу расставлены 9 фишек в форме квадрата 3×3. Любая фишка может прыгать через другую фишку на свободную клетку (по горизонтали, вертикали или диагонали). Можно ли за некоторое количество прыжков расставить фишки в форме такого же квадрата в каком-либо другом углу доски? ![]() ![]() ![]() Доказать, что если целое n > 1, то 11·2²·3³·...·nn < nn(n+1)/2. ![]() ![]() ![]() В параллелограмме ABCD провели трисектрисы углов A и B. Трисектрисы, ближние к стороне AB, пересекаются в точке O. Обозначим пересечение трисектрисы AO со второй трисектрисой угла B через A1, а пересечение трисектрисы BO со второй трисектрисой угла A через B1. Пусть M – середина отрезка A1B1, а прямая MO пересекает сторону AB в точке N. Докажите, что треугольник A1B1N – равносторонний. ![]() ![]() |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 91]
В параллелограмме ABCD провели трисектрисы углов A и B. Трисектрисы, ближние к стороне AB, пересекаются в точке O. Обозначим пересечение трисектрисы AO со второй трисектрисой угла B через A1, а пересечение трисектрисы BO со второй трисектрисой угла A через B1. Пусть M – середина отрезка A1B1, а прямая MO пересекает сторону AB в точке N. Докажите, что треугольник A1B1N – равносторонний.
На продолжении стороны BC треугольника ABC за вершину B отложен отрезок BB', равный стороне AB. Биссектрисы внешних углов при вершинах B и C пересекаются в точке M. Докажите, что точки A, B', C и M лежат на одной окружности.
В треугольнике ABC точки A1, B1, C1 – основания высот из вершин A, B, C, точки CА и CВ – проекции C1 на AC и BC соответственно.
На сторонах АВ, ВС и АС равностороннего треугольника АВС выбраны точки K, M и N соответственно так, что угол MKB равен углу MNC, а угол KMB равен углу KNA. Докажите, что NB – биссектриса угла MNK.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 91] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |