ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В окружность вписан шестиугольник ABCDEF. K, L, M, N – точки пересечения пар прямых AB и CD, AC и BD, AF и DE, AE и DF. ![]() |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 88]
Противоположные стороны шестиугольника ABCDEF попарно параллельны. Докажите, что треугольники ACE и BDF равновелики.
В шестиугольнике ABCDEF известно, что AB || DE, BC || EF, CD || FA и AD = BE = CF. Докажите, что около этого шестиугольника можно описать окружность.
Шестиугольник ABCDEF вписан в окружность радиуса R с центром O, причём AB = CD = EF = R. Докажите, что точки попарного пересечения описанных окружностей треугольников BOC, DOE и FOA, отличные от точки O, являются вершинами правильного треугольника со стороной R.
В окружность вписан шестиугольник ABCDEF. K, L, M, N – точки пересечения пар прямых AB и CD, AC и BD, AF и DE, AE и DF.
Даны треугольник XYZ и выпуклый шестиугольник ABCDEF. Стороны AB, CD и EF параллельны и равны соответственно сторонам XY, YZ и ZX. Докажите, что площадь треугольника с вершинами в серединах сторон BC, DE и FA не меньше площади треугольника XYZ.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 88] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |