Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 152]
|
|
Сложность: 3- Классы: 8,9,10
|
Пусть
α ,
β ,
γ и
δ — градусные
меры углов некоторого выпуклого четырехугольника. Всегда ли из
этих четырех чисел можно выбрать три числа так, чтобы они выражали
длины сторон некоторого треугольника (например, в метрах)?
|
|
Сложность: 3- Классы: 8,9,10
|
На плоскости дан квадрат и точка Р. Могут ли расстояния от точки Р до вершин квадрата оказаться равными 1, 1, 2 и 3?
Рассматриваются всевозможные треугольники с целочисленными сторонами и периметром 2000, а также всевозможные треугольники с целочисленными сторонами и периметром 2003. Каких треугольников больше?
|
|
Сложность: 3 Классы: 8,9,10
|
Из четырёх палочек сложен контур параллелограмма. Обязательно ли из них можно сложить контур треугольника (одна из сторон треугольника складывается из двух палочек)?
|
|
Сложность: 3 Классы: 8,9,10
|
Биссектриса и высота, проведённые из одной вершины некоторого треугольника, делят его противоположную сторону на три отрезка.
Может ли оказаться, что из этих отрезков можно сложить треугольник?
Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 152]