Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 49]
|
|
Сложность: 4- Классы: 9,10,11
|
а) Существует ли треугольник, в котором наименьшая медиана длиннее наибольшей биссектрисы?
б) Существует ли треугольник, в котором наименьшая биссектриса длиннее наибольшей высоты?
|
|
Сложность: 4- Классы: 8,9,10
|
В окружности с центром O проведены две параллельные хорды AB и CD. Окружности с диаметрами AB и CD пересекаются в точке P.
Доказать, что середина отрезка OP равноудалена от прямых AB и CD.
Докажите, что квадрат биссектрисы треугольника равен произведению сторон, её заключающих, без произведения отрезков третьей стороны, на которые она разделена биссектрисой.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Три медианы треугольника разделили его углы на шесть углов, среди которых ровно $k$ больше 30°. Каково наибольшее возможное значение $k$?
|
|
Сложность: 4 Классы: 8,9,10,11
|
В треугольнике $ABC$ отношение медианы $AM$ к стороне $BC$ равно $\sqrt{3}:2$. На сторонах $ABC$ отмечены точки, делящие каждую сторону на 3 равные части. Докажите, что какие-то 4 из этих 6 отмеченных точек лежат на одной окружности.
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 49]