ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть $O$, $I$ – центры описанной и вписанной окружностей треугольника $ABC$; $R$, $r$ – их радиусы; $D$ – точка касания вписанной окружности со стороной $BC$; $N$ – произвольная точка на отрезке $ID$. Перпендикуляр к $ID$ в точке $N$ пересекает описанную окружность $ABC$ в точках $X$ и $Y$. Пусть $O_1$ – центр описанной окружности $XIY$. Найдите произведение $OO_1\cdot IN$. ![]() |
Страница: << 1 2 3 >> [Всего задач: 11]
Докажите, что в прямоугольном треугольнике биссектриса, проведённая из вершины прямого угла, не превосходит половины проекции гипотенузы на прямую, перпендикулярную этой биссектрисе.
В выпуклом четырёхугольнике ABCD противоположные углы A и C прямые. На диагональ AC опущены перпендикуляры BE и DF. Докажите, что CE = FA.
В остроугольном треугольнике ABC проведены высоты BD и CE. Из вершин B и C на прямую ED опущены перпендикуляры BF и CG. Докажите, что EF = DG.
Ортоцентр H треугольника ABC лежит на вписанной в треугольник окружности.
Страница: << 1 2 3 >> [Всего задач: 11] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |