Страница:
<< 21 22 23 24
25 26 27 >> [Всего задач: 137]
|
|
Сложность: 4 Классы: 9,10,11
|
Во вписанно-описанном четырехугольнике отметили центры $O$, $I$ описанной и вписанной окружностей и середину $M$ одной из диагоналей, после чего сам четырехугольник стерли. Восстановите его.
|
|
Сложность: 4+ Классы: 10,11
|
Четырёхугольник ABCD описан около окружности с центром I и вписан в окружность Ω. Прямые AB и CD пересекаются в точке P, а прямые BC и AD пересекаются в точке Q. Докажите, что описанная окружность ω треугольника PIQ перпендикулярна Ω.
|
|
Сложность: 4+ Классы: 8,9,10,11
|
Восстановите вписанно-описанный четырёхугольник $ABCD$ по серединам дуг $AB$, $BC$, $CD$ его описанной окружности.
В четырёхугольник ABCD можно вписать и вокруг него можно
описать окружность. Диагонали этого четырёхугольника взаимно
перпендикулярны. Найдите его площадь, если радиус описанной
окружности равен R и AB = 2BC.
|
|
Сложность: 5- Классы: 9,10,11
|
Четырёхугольник ABCD описан около окружности ω. Продолжения сторон AB и CD пересекаются в точке O. Окружность ω1 касается стороны BC в точке K и продолжений сторон AB и CD; окружность ω2 касается стороны AD в точке L и продолжений сторон AB и CD. Известно, что точки O, K и L лежат на одной прямой. Докажите, что середины сторон BC, AD и центр окружности ω лежат на одной прямой.
Страница:
<< 21 22 23 24
25 26 27 >> [Всего задач: 137]