ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В тетраэдре $ABCD$ скрещивающиеся рёбра попарно равны. Через середину отрезка $AH_A$, где $H_A$  – точка пересечения высот грани $BCD$, провели прямую $h_A$ перпендикулярно плоскости $BCD$. Аналогичным образом определили точки $H_B$, $H_C$, $H_D$ и построили прямые $h_B$, $h_C$, $h_D$ соответственно для трёх других граней тетраэдра. Докажите, что прямые $h_A$, $h_B$, $h_C$, $h_D$ пересекаются в одной точке.

   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 182]      



Задача 111613

Темы:   [ Правильный тетраэдр ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4
Классы: 10,11

Ребро правильного тетраэдра ABCD равно a . На рёбрах AB и CD взяты соответственно точки E и F так, что вписанная в тетраэдр сфера делит отрезок EF , на три части, длины которых относятся как 3:5:4, считая от точки E . Найдите длину отрезка EF .
Прислать комментарий     Решение


Задача 115944

Темы:   [ Ортоцентрический тетраэдр ]
[ Теорема о трех перпендикулярах ]
Сложность: 4
Классы: 10,11

В тетраэдре одна из высот пересекает две другие. Докажите, что все высоты пересекаются в одной точке.
Прислать комментарий     Решение


Задача 78488

Темы:   [ Правильный тетраэдр ]
[ Свойства частей, полученных при разрезаниях ]
[ Гомотетия помогает решить задачу ]
[ Разрезания (прочее) ]
Сложность: 4+
Классы: 10,11

Каждое ребро правильного тетраэдра разделено на три равные части. Через каждую полученную точку деления проведены две плоскости, параллельные соответственно двум граням тетраэдра, не проходящим через эту точку. На сколько частей построенные плоскости разбивают тетраэдр?
Прислать комментарий     Решение


Задача 65051

Темы:   [ Правильный тетраэдр ]
[ Движение помогает решить задачу ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5-
Классы: 10,11

Автор: Белухов Н.

Три равных правильных тетраэдра имеют общий центр. Могут ли все грани многогранника, являющегося их пересечением, быть равны?

Прислать комментарий     Решение

Задача 67319

Темы:   [ Равногранный тетраэдр ]
[ Центр масс ]
[ Ортогональная проекция (прочее) ]
[ Прямая Эйлера и окружность девяти точек ]
Сложность: 5-
Классы: 10,11

В тетраэдре $ABCD$ скрещивающиеся рёбра попарно равны. Через середину отрезка $AH_A$, где $H_A$  – точка пересечения высот грани $BCD$, провели прямую $h_A$ перпендикулярно плоскости $BCD$. Аналогичным образом определили точки $H_B$, $H_C$, $H_D$ и построили прямые $h_B$, $h_C$, $h_D$ соответственно для трёх других граней тетраэдра. Докажите, что прямые $h_A$, $h_B$, $h_C$, $h_D$ пересекаются в одной точке.
Прислать комментарий     Решение


Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 182]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .