ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Для любых натуральных чисел a1, a2, ..., am, никакие два из которых не равны друг другу и ни одно из которых не делится на квадрат натурального числа, большего единицы, а также для любых целых и отличных от нуля целых чисел b1, b2, ..., bm сумма     не равна нулю. Докажите это.

   Решение

Задачи

Страница: << 41 42 43 44 45 46 47 [Всего задач: 233]      



Задача 73773

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Бином Ньютона ]
[ Индукция (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 5
Классы: 9,10,11

Автор: Шлейфер Р.

Для любого натурального числа n сумма     делится на 2n–1. Докажите это.

Прислать комментарий     Решение

Задача 73620

Темы:   [ Квадратные корни (прочее) ]
[ Рациональные и иррациональные числа ]
[ Индукция (прочее) ]
[ Уравнения в целых числах ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 5+
Классы: 8,9,10

Для любых натуральных чисел a1, a2, ..., am, никакие два из которых не равны друг другу и ни одно из которых не делится на квадрат натурального числа, большего единицы, а также для любых целых и отличных от нуля целых чисел b1, b2, ..., bm сумма     не равна нулю. Докажите это.

Прислать комментарий     Решение

Задача 76460

Темы:   [ Пересекающиеся сферы ]
[ Окружности на сфере ]
[ Малые шевеления ]
[ Разные задачи на разрезания ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 6+
Классы: 10,11

На какое самое большее число частей можно разбить пространство пятью сферами?
Прислать комментарий     Решение


Страница: << 41 42 43 44 45 46 47 [Всего задач: 233]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .