ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

По кругу выписано несколько чисел. Если для некоторых четырёх идущих подряд чисел a, b, c, d произведение чисел  a – d  и  b – c  отрицательно, то числа b и c можно поменять местами. Докажите, что такие операции можно проделать лишь конечное число раз.

   Решение

Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 288]      



Задача 65736

Темы:   [ Инварианты ]
[ Свойства коэффициентов многочлена ]
[ Теорема Виета ]
Сложность: 4
Классы: 9,10,11

На доске написано несколько приведённых многочленов 37-й степени, все коэффициенты которых неотрицательны. Разрешается выбрать любые два выписанных многочлена  f и g и заменить их на такие два приведённых многочлена 37-й степени  f1 и g1, что  f + g = f1 + g1  или  fg = f1g1.  Докажите, что после применения любого конечного числа таких операций не может оказаться, что каждый многочлен на доске имеет 37 различных положительных корней.

Прислать комментарий     Решение

Задача 66566

Темы:   [ Полуинварианты ]
[ Теория чисел. Делимость (прочее) ]
Сложность: 4
Классы: 9,10,11

На доске написаны $1000$ последовательных целых чисел. За ход можно разбить написанные числа на пары произвольным образом и каждую пару чисел заменить на их сумму и разность (не обязательно вычитать из большего меньшее; все замены происходят одновременно). Докажите, что на доске больше никогда не появятся $1000$ последовательных целых чисел.
Прислать комментарий     Решение


Задача 73649

Темы:   [ Полуинварианты ]
[ Перестановки и подстановки (прочее) ]
[ Процессы и операции ]
Сложность: 4
Классы: 8,9,10

По кругу выписано несколько чисел. Если для некоторых четырёх идущих подряд чисел a, b, c, d произведение чисел  a – d  и  b – c  отрицательно, то числа b и c можно поменять местами. Докажите, что такие операции можно проделать лишь конечное число раз.

Прислать комментарий     Решение

Задача 97807

Тема:   [ Полуинварианты ]
Сложность: 4
Классы: 8,9

Автор: Анджанс А.

Несколько ребят стоят по кругу. У каждого есть некоторое количество конфет. Сначала у каждого чётное количество конфет. По команде каждый передает половину своих конфет стоящему справа. Если после этого у кого-нибудь оказалось нечётное количество конфет, то ему извне добавляется одна конфета. Это повторяется много раз. Доказать, что настанет время, когда у всех будет поровну конфет.

Прислать комментарий     Решение

Задача 97813

Темы:   [ Полуинварианты ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 4
Классы: 8,9

На шахматной доске N×N стоят N² шашек. Можно ли их переставить так, чтобы любые две шашки, отстоявшие на ход коня, после перестановки отстояли друг от друга лишь на ход короля (то есть стояли рядом)? Рассмотрите два случая:
  а)  N = 3;
  б)  N = 8.

Прислать комментарий     Решение

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 288]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .