ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите необходимые и достаточные условия, которым должны удовлетворять числа a, b, α и β, чтобы прямоугольник размером a×b можно было разрезать на прямоугольники размером α×β. Например, можно ли прямоугольник размером 50×60 разрезать на прямоугольники размером
а) 20×15;   б) 5×8;   в) 6,25×15;   г)  

   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 62]      



Задача 110038

Темы:   [ Связность и разложение на связные компоненты ]
[ Обход графов ]
[ Вспомогательная раскраска (прочее) ]
Сложность: 5-
Классы: 9,10,11

В стране 2000 городов, некоторые пары городов соединены дорогами. Известно, что через любой город проходит не более N различных несамопересекающихся циклических маршрутов нечётной длины. Докажите, что страну можно разделить на  2N + 2  республики так, чтобы никакие два города из одной республики не были соединены дорогой.

Прислать комментарий     Решение

Задача 115497

Темы:   [ Индекс векторного поля ]
[ Обход графов ]
[ Вспомогательная раскраска (прочее) ]
[ Доказательство от противного ]
Сложность: 5-
Классы: 9,10,11

В некоторых клетках квадрата 20×20 стоит стрелочка в одном из четырёх направлений. На границе квадрата все стрелочки смотрят вдоль границы по часовой стрелке (см. рис.). Кроме того, стрелочки в соседних (возможно, по диагонали) клетках не смотрят в противоположных направлениях. Докажите, что найдётся клетка, в которой стрелочки нет.

Прислать комментарий     Решение

Задача 79564

Темы:   [ Сфера, вписанная в тетраэдр ]
[ Касательные к сферам ]
[ Вспомогательная раскраска (прочее) ]
[ Многогранные углы ]
Сложность: 5+
Классы: 10,11

На рёбрах произвольного тетраэдра выбрано по точке. Через каждую тройку точек, лежащих на рёбрах с общей вершиной, проведена плоскость. Докажите, что если три из четырёх проведённых плоскостей касаются вписанного в тетраэдр шара, то и четвёртая плоскость также его касается.
Прислать комментарий     Решение


Задача 73679

Темы:   [ Разрезания на параллелограммы ]
[ Соизмеримость и несоизмеримость ]
[ Вспомогательная раскраска (прочее) ]
[ Деление с остатком ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 6
Классы: 9,10,11

Найдите необходимые и достаточные условия, которым должны удовлетворять числа a, b, α и β, чтобы прямоугольник размером a×b можно было разрезать на прямоугольники размером α×β. Например, можно ли прямоугольник размером 50×60 разрезать на прямоугольники размером
а) 20×15;   б) 5×8;   в) 6,25×15;   г)  

Прислать комментарий     Решение

Задача 109510

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Правильный (равносторонний) треугольник ]
[ Вспомогательная раскраска (прочее) ]
[ Геометрическая прогрессия ]
[ Процессы и операции ]
Сложность: 6
Классы: 9,10,11

Докажите, что существует такое натуральное число n , что если правильный треугольник со стороной n разбить прямыми, параллельными его сторонам, на n2 правильных треугольников со стороной 1, то среди вершин этих треугольников можно выбрать 1993n точек, никакие три из которых не являются вершинами правильного треугольника (не обязательно со сторонами, параллельными сторонам исходного треугольника).
Прислать комментарий     Решение


Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 62]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .