ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) На рисунке слева изображены шесть точек, которые лежат по три на четырёх прямых. Докажите, что можно 24 разными способами отобразить это множество из шести точек на себя так, чтобы каждые три точки, лежащие на одной прямой, отобразились в три точки, лежащие на одной прямой. б) На рисунке справа девять точек лежат по три на девяти прямых, причём через каждую точку проходит по три таких прямых. Эти девять точек и девять прямых образуют знаменитую конфигурацию Паскаля. Сколькими способами можно множество наших девяти точек отобразить на себя так, чтобы каждая тройка точек, лежащая на одной из девяти наших прямых, отобразилась на тройку точек, которая тоже лежит на некоторой прямой из нашей конфигурации? в) Тот же вопрос для конфигурации Дезарга (из десяти точек и десяти прямых), изображённой на нижнем рисунке. ![]() |
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 65]
а) На рисунке слева изображены шесть точек, которые лежат по три на четырёх прямых. Докажите, что можно 24 разными способами отобразить это множество из шести точек на себя так, чтобы каждые три точки, лежащие на одной прямой, отобразились в три точки, лежащие на одной прямой. б) На рисунке справа девять точек лежат по три на девяти прямых, причём через каждую точку проходит по три таких прямых. Эти девять точек и девять прямых образуют знаменитую конфигурацию Паскаля. Сколькими способами можно множество наших девяти точек отобразить на себя так, чтобы каждая тройка точек, лежащая на одной из девяти наших прямых, отобразилась на тройку точек, которая тоже лежит на некоторой прямой из нашей конфигурации? в) Тот же вопрос для конфигурации Дезарга (из десяти точек и десяти прямых), изображённой на нижнем рисунке.
а) Каждая сторона равностороннего треугольника разбита на m равных частей, и через точки деления проведены прямые, параллельные сторонам, разрезавшие треугольник на m² маленьких треугольников. Среди вершин полученных треугольников нужно отметить N вершин так, чтобы ни для каких двух отмеченных вершин A и B отрезок АВ не был параллелен ни одной из сторон. Каково наибольшее возможное значение N (при заданном m)? б) Разделим каждое ребро тетраэдра на m равных частей и через точки деления проведём плоскости, параллельные граням. Среди вершин полученных многогранников отметим N вершин так, чтобы никакие две отмеченные вершины не лежали на прямой, параллельной одной из граней. Каково наибольшее возможное N? в) Среди решений уравнения x1 + x2 + ... + xk = m в целых неотрицательных числах нужно выбрать N решений так, чтобы ни в каких двух из выбранных решений ни одна переменная xi не принимала одного и того же значения. Чему равно наибольшее возможное значение N?
Найдите количество пятизначных чисел, в десятичной записи которых содержится хотя бы одна цифра 8.
Доказать, что в произвольном выпуклом 2n-угольнике найдётся диагональ, не параллельная ни одной из его сторон.
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 65] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |