ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи При каких натуральных n ≥ 2 неравенство ![]() |
Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 354]
В правильном восемнадцатиугольнике A0...A17 проведены диагонали A0Ap+3, Ap+1A18–r и A1Ap+q+3.
В трёх вершинах квадрата находятся три кузнечика. Они играют в чехарду, то есть прыгают друг через друга. При этом, если кузнечик A прыгает через кузнечика B, то после прыжка он оказывается от B на том же расстоянии, что и до прыжка, и, естественно, на той же прямой. Может ли один из них попасть в четвёртую вершину квадрата?
Углы треугольника ABC удовлетворяют соотношению sin²A + sin²B + sin²C = 1.
0 <
При каких натуральных n ≥ 2 неравенство
Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 354] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |