ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Доказать, что если длины сторон прямоугольного треугольника выражаются целыми числами, то произведение чисел, выражающих длины катетов, делится на 12.

   Решение

Задачи

Страница: << 115 116 117 118 119 120 121 >> [Всего задач: 2440]      



Задача 76437

Темы:   [ Арифметика остатков (прочее) ]
[ Теорема Пифагора (прямая и обратная) ]
[ Целочисленные треугольники ]
Сложность: 3+
Классы: 8,9

Доказать, что если длины сторон прямоугольного треугольника выражаются целыми числами, то произведение чисел, выражающих длины катетов, делится на 12.

Прислать комментарий     Решение

Задача 76458

Темы:   [ Арифметика остатков (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 3+
Классы: 8,9

Найти остаток от деления на 7 числа  1010 + 10102 + 10103 + ... + 101010.

Прислать комментарий     Решение

Задача 76524

Темы:   [ Делимость чисел. Общие свойства ]
[ Тождественные преобразования ]
Сложность: 3+
Классы: 7,8,9

Доказать, что  n² + 3n + 5  ни при каком целом n не делится на 121.

Прислать комментарий     Решение

Задача 76551

Темы:   [ Четность и нечетность ]
[ Треугольник Паскаля и бином Ньютона ]
[ Периодичность и непериодичность ]
Сложность: 3+
Классы: 10,11

В числовом треугольнике

каждое число равно сумме чисел, расположенных в предыдущей строке над этим числом и над его соседями справа и слева (отсутствующие числа считаются равными нулю). Докажите, что в каждой строке, начиная с третьей, найдутся чётные числа.

Прислать комментарий     Решение

Задача 77867

Темы:   [ Уравнения в целых числах ]
[ Перебор случаев ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 3+
Классы: 8,9

Сумма обратных величин трёх натуральных чисел равна 1. Каковы эти числа?

Прислать комментарий     Решение

Страница: << 115 116 117 118 119 120 121 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .