Страница:
<< 117 118 119 120
121 122 123 >> [Всего задач: 2440]
|
|
Сложность: 3+ Классы: 8,9,10
|
2n = 10a + b. Доказать, что если n > 3, то ab делится на 6. (n, a и b – целые числа, b < 10.)
|
|
Сложность: 3+ Классы: 8,9,10
|
Известно, что ax4 + bx³ + cx² + dx + e, где a, b, c, d, e – данные целые числа, при любом целом x делится на 7.
Доказать, что все числа a, b, c, d, e делятся на 7.
|
|
Сложность: 3+ Классы: 8,9,10
|
При каких целых n число 20n + 16n – 3n – 1 делится на 323?
|
|
Сложность: 3+ Классы: 9,10,11
|
Разбить число 1957 на 12 целых положительных слагаемых a1, a2, ..., a12 так, чтобы произведение
a1!a2!...a12! было минимально.
|
|
Сложность: 3+ Классы: 9,10
|
Имеется бесконечная шахматная доска. Обозначим через (a, b) поле, расположенное на пересечении горизонтали с номером a и вертикали с номером b. Фишка с поля (a, b) может сделать ход на любое из восьми полей: (a ± m, b ± n),
(a ± n, b ± m), где m, n – фиксированные числа, а "+" и "–" комбинируются произвольно. Сделав x ходов, фишка вернулась на исходное поле. Доказать, что x чётно.
Страница:
<< 117 118 119 120
121 122 123 >> [Всего задач: 2440]