ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 118 119 120 121 122 123 124 >> [Всего задач: 2440]      



Задача 78239

Темы:   [ Признаки делимости на 3 и 9 ]
[ Перебор случаев ]
Сложность: 3+
Классы: 8,9

Имеется трёхзначное число abc, берём cba и вычтем из большего меньшее. Получим число  a1b1c1,  сделаем с ним то же самое и т.д.
Доказать, что на каком-то шаге мы получим или число 495, или 0. Случай  a1 = 0  допускается.

Прислать комментарий     Решение

Задача 78246

Темы:   [ Четность и нечетность ]
[ Шахматные доски и шахматные фигуры ]
[ Шахматная раскраска ]
[ Обход графов ]
Сложность: 3+
Классы: 7,8,9

Дана ладья, которой разрешается делать ходы только длиной в одну клетку. Доказать, что она может обойти все клетки прямоугольной шахматной доски, побывав на каждой клетке ровно один раз, и вернуться в начальную клетку тогда и только тогда, когда число клеток на доске чётно.

Прислать комментарий     Решение

Задача 78261

Темы:   [ Четность и нечетность ]
[ Ломаные ]
Сложность: 3+
Классы: 9

Дана фигура, состоящая из 16 отрезков (см. рис.).

Доказать, что нельзя провести ломаную, пересекающую каждый из отрезков ровно один раз. Ломаная может быть незамкнутой и самопересекающейся, но её вершины не должны лежать на отрезках, а стороны – проходить через вершины фигуры.

Прислать комментарий     Решение

Задача 78281

Темы:   [ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
[ Шахматные доски и шахматные фигуры ]
[ Шахматная раскраска ]
Сложность: 3+
Классы: 10,11

Конём называется фигура, ход которой состоит в перемещении на n клеток по горизонтали и на 1 по вертикали (или наоборот). Конь стоит на некотором поле бесконечной шахматной доски. При каких n он может попасть на любое заданное поле?

Прислать комментарий     Решение

Задача 78289

Темы:   [ Признаки делимости на 3 и 9 ]
[ Замощения костями домино и плитками ]
Сложность: 3+
Классы: 8,9

"Уголком" называется фигура, составленная из трёх квадратов со стороной 1 в виде буквы "Г".
Доказать, что прямоугольник размерами 1961×1963 нельзя разбить на уголки, а прямоугольник размерами 1963×1965 – можно.

Прислать комментарий     Решение

Страница: << 118 119 120 121 122 123 124 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .