ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Доказать, что разносторонний треугольник нельзя разрезать на два равных треугольника.

   Решение

Задачи

Страница: 1 2 3 4 5 6 >> [Всего задач: 28]      



Задача 103890

Темы:   [ Свойства частей, полученных при разрезаниях ]
[ Подсчет двумя способами ]
Сложность: 2+
Классы: 6,7

Прямоугольник разрезали шестью вертикальными и шестью горизонтальными разрезами на 49 прямоугольников (см. рисунок). Оказалось, что периметр каждого из получившихся прямоугольников — целое число метров. Обязательно ли периметр исходного прямоугольника — целое число метров?

Прислать комментарий     Решение


Задача 102851

Темы:   [ Свойства частей, полученных при разрезаниях ]
[ Средняя линия треугольника ]
Сложность: 2+
Классы: 7,8

Из треугольника прямоугольник. Разрежьте произвольный треугольник на три части, из которых можно сложить прямоугольник.
Прислать комментарий     Решение


Задача 76504

Темы:   [ Свойства частей, полученных при разрезаниях ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3
Классы: 8,9

Доказать, что разносторонний треугольник нельзя разрезать на два равных треугольника.
Прислать комментарий     Решение


Задача 78606

Темы:   [ Свойства частей, полученных при разрезаниях ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 3
Классы: 10,11

Можно ли разрезать квадратный пирог на 9 равновеликих частей таким способом: выбрать внутри квадрата две точки и соединить каждую из них прямолинейными разрезами со всеми четырьмя вершинами квадрата? Если можно, то какие две точки нужно выбрать?
Прислать комментарий     Решение


Задача 77910

Темы:   [ Свойства частей, полученных при разрезаниях ]
[ Выпуклые многоугольники ]
Сложность: 3+
Классы: 7,8,9

В выпуклом 13-угольнике проведены все диагонали. Они разбивают его на многоугольники. Возьмём среди них многоугольник с наибольшим числом сторон. Какое самое большее число сторон может он иметь?
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 >> [Всего задач: 28]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .